Improved Anti-Osteoporosis Potency and Reduced Endometrial Membrane Hyperplasia During Hormone Replacement Therapy with Estrogen–RGD Peptide Conjugates

Yu Xiong,[†] Ming Zhao,^{*,‡} Chao Wang,[†] Heng Wei Chang,^{*,§} and Shiqi Peng^{*,‡}

College of Pharmaceutical Sciences, Peking University, Beijing 100083, People's Republic of China, College of Pharmaceutical Sciences, Capital University of Medical Sciences, Beijing, 100069, People's Republic of China, and C S Bio Company, 20 Kelly Court, Menlo Park, California 94025

Received March 4, 2007

To improve the specificity and potency of estrogen replacement therapy therapeutics while also minimizing the side effects such as bone resorption and thickening of the uterine wall, a series of novel estrogen-derived conjugates estradiol-3-RGD, estradiol-17-RGD, and estrone-3-RGD peptides have been prepared. In a mouse model, intraperitoneal (i.p.) administration of these estrogen-RGD peptide conjugates resulted in decreased serum concentrations of calcium and alkaline phosphatase, as well as increased levels of calcium, phosphorus, and minerals in the mouse femur. Furthermore, the anti-osteoporosis action of these conjugates followed a dose-dependent manner and was accompanied with no observable effects on endometrial cell hyperplasia. In addition to all of these compounds exhibiting biological activity when administered by the i.p. route, we were particularly pleased to note that the estradiol-3-RGD and estradiol-17-RGD conjugates were both orally active.

1. Introduction

Owing to ovarium atrophy, almost all postmenopausal women over 55 years of age confront osteoporosis to varying extents, with over 50% suffering from bone fractures and secondary complications.^{1–3} Because the lack of estrogen resulting from ovarium atrophy is responsible for the onset and progression of osteoporosis, many postmenopausal women undergo estrogen replacement therapy (ERT^{*a*}) or estrogen/progesterone replacement therapy (HRT).⁴ For postmenopausal women, ERT or HRT not only inhibit bone loss,⁵ but also decrease the risk of coronary heart disease.⁶ Michealsson et al. have shown that if postmenopausal women receive HRT for at least 5 years their fracture risk will be decreased by about 50%;⁷ however, long-term therapy has been linked to a series of dose-related side effects such as breast cancer and hyperplasia of the uterine membrane.^{8–11}

In previous work, we have demonstrated that the preparation of conjugates comprised of steroids and peptides can result in synergism of both molecular "partners". For example, in the case of hydrocortisone–KTP and estrone–KTP conjugates, the analgesic activities of hydrocortisone, estrone, and kyotorphin (KTP) were all enhanced.¹² In hydrocortisone–urotoxin and prednisolone–urotoxin conjugates, the immunosuppressive activities of hydrocortisone, prednisolone, and the urotoxins were all enhanced.¹³ In estrogen–GHRPs conjugates, the anti-

[†] Peking University.

§ C Ŝ Bio Co.

osteoperotic effects of estradiol, estrone, and growth hormone releasing peptides (GHRPs) were enhanced.¹⁴

It is commonly accepted that osteoporosis relates not only to a decrease in bone formation modulated by osteoblasts, but also to an increase in bone resorption modulated by osteoclasts. In ERT and HRT, estrogen is used to treat the decrease in skeletal muscle and bone by direct modulation of osteoblastic activity and proliferation or by regulation of gene expression in osteoblasts and osteoclasts.^{15–17} Bone resorption is regulated by the binding of osteoclasts to the bone surface and is, therefore, dependent upon osteoclast adhesiveness. This bone adhesion process is mediated by the Arg-Gly-Asp (RGD)binding cell-surface integrin receptor.¹⁸

Based on this information, we surmised that a "two-pronged" approach, combining the effects of estrogen on upregulation of osteoblastic activity and proliferation with the adhesion properties of the RGD peptide to downregulate osteoclast adhesiveness, and the synergism for both estrogen and peptide resulted from their conjugation may prove useful in the design of more efficacious osteoperosis inhibitors. Herein, we report our preliminary work in this area, which includes the synthesis and in vivo characterization of three kinds of estrogen—peptide conjugates, wherein the RGD peptide is incorporated at the 3-or 17-position of estradiol and the 3-position of estrone.

2. Results and Discussion

2.1. Preparation of RGD Peptides. Boc-Arg(NO₂)-Gly-Asp-(OBzl)-Ser(Bzl)-OBzl, Boc-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl, and Boc-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl were prepared via the solution-phase method according to the route depicted in Scheme 1. The stepwise synthesis was carried out from C-terminal to N-terminal with L-Ser(Bzl)-OBzl, L-Val-OBzl, and L-Phe-OBzl as the C-terminal residue, respectively. Total yields were in a range of 76–82%. Upon removal of the *N*-terminal Boc groups, the building blocks HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl (1), HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl (2), and HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl (3) were obtained in 93, 94, and 93% yield. Treating

^{*} To whom correspondence should be addressed. Tel.: (650) 322-1111 (H.C.); +86 10 8280 2482 (M.Z.); 86-10-8391-1528 (S.P.). Fax: (650) 322-2278 (H.C.); +86 10 8280 2482 (M.Z.); 86-10-8391-1528 (S.P.). E-mail: chang@csbio.com (H.C.); mzhao@mail.bjum.edu.cn (M.Z.); sqpeng@mail.bjum.edu.cn (S.P.).

[‡] Capital University of Medical Sciences.

^{*a*} Abbreviations: ERT, estrogen replacement therapy; ALP, alkaline phosphatase; HRT, hormone replacement therapy; ca., circa; KTP, kyotorphin; GHRPs, growth hormone releasing peptides; AA, amino acid; DCC, N,N'-dicyclohexylcarbodiimide; HOBt, 1-hydroxybenzotriazole hydrate; i.p., intraperitoneal; μ L, microlitre; wt, weight; ESI-MS, electrospray ionization mass spectrometery; OVX, ovariotomy; FAB-MS, fast atom bombardment mass spectrometery; Boc, butyloxycarbonyl group; Bzl, benzyl group; THF, tetrahydrofuran; ESI-MS, electrospray ionization mass spectrometery; Anal. Calcd, analytical calculated; DMSO- d_6 , dimethyl- d_6 sulfoxide; HPLC, high performance liquid chromatography; CMC, carboxymethylcellulose.

Scheme 1. Preparation of RGD Peptides^a

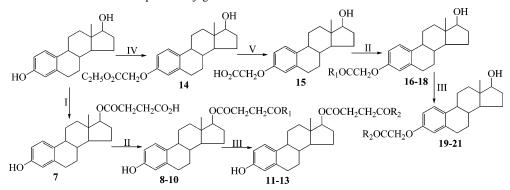
H-AA-OBzl
$$\rightarrow$$
 Boc-Asp(OBzl)-AA-OBzl \rightarrow HCl+H-Asp(OBzl)-AA-OBzl
 \downarrow III
HCl+H-Gly-Asp(OBzl)-AA-OBzl \square Boc-Gly-Asp(OBzl)-AA-OBzl
 \downarrow IV
c-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl \square HCl-H-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl

Boc-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBz HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBz V I-3

^{*a*} For H-AA-OBzl, AA = Ser(Bzl), Val, and Phe; for **1**, AA = Ser(Bzl), for **2** and **5**, AA = Val, for **3** and **6**, AA = Phe; and for **4**, AA = Ser. Reagents: (I) DCC, HOBt, and Boc-Gly-OH; (II) hydrogen chloride in ethyl acetate; (III) DCC, HOBt, and Boc-Asp(OBzl)-OH; (IV) DCC, HOBt, and Boc-Arg(NO₂)-OH; (V) Pt/H₂.

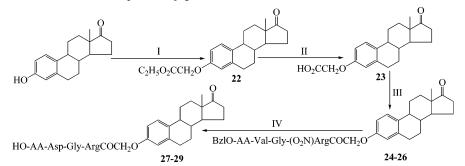
1-3 with Pd/H₂ removed all protecting groups and the RGD peptides (4-6) were obtained in 89-92% yield.

2.2. Preparation of Estradiol–3-RGD Peptide Conjugates. The estradiol–3-RGD peptide conjugates were prepared as outlined in Scheme 2. Thus, the C₃-hydroxyl group of estradiol was first alkylated with ethyl bromoacetate to provide ethyl estradiol-3-oxylacetate (14) in 83% yield. Saponification of 14 resulted in acid 15 in excellent yield (96%). Conjugation of 14 with HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl (1–3) then yielded the corresponding estradiol–3-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl derivatives 16–18 in 93, 74, and 61% yield, respectively. Following global deprotection by catalytic hydrogenation, estradiol–3-Arg-Gly-Asp-AA-OH (19–21) were obtained in 70, 73, and 77% yield, respectively. The yields indicate that with the methylcarbonyl group as the linker RGD peptides can be smoothly introduced into the 3-position of estradiol.


2.3. Preparation of Estradiol-17-RGD Peptide Conjugates. The estradiol-17-monoester of succinic acid (7) was first prepared by treating estradiol with succinic anhydride in 95%

yield. Coupling of **7** and HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl (1-3) the corresponding estradiol-17-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl (8-10) were obtained in 61, 53, and 53% yield, respectively. Following global deprotection by catalytic hydrogenation, estradiol-3-Arg-Gly-Asp-AA-OH (11-13) were obtained in 62, 68, and 58% yield, respectively. The yields indicate that with the carbonylethylcarbonyl group as the linker RGD peptides can be smoothly introduced into the 17-position of estradiol.

2.4. Preparation of Estrone–3-RGD Peptide Conjugates. As outlined in Scheme 3, the preparation of the estrone 3-RGD peptide conjugates commenced with the alkylation of the C₃-hydroxyl group of estrone using ethyl bromoacetate to give alkyl ether 22 in 90% yield. Saponification of 22 yielded acid 23 (96% yield) to which HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl (1–3) were coupled to give the corresponding estrone– 3-Arg(NO₂)-Gly-Asp(OBzl)-AA-OBzl conjugates 24–26 in 62, 68, and 70% yield, respectively. Following global deprotection by catalytic hydrogenation, estrone–3-Arg-Gly-Asp-AA-OH conjugates 27–29 were obtained in 57, 76, and 56% yield, respectively. The yields demonstrate that through the same linker RGD peptides can also be smoothly introduced into the 3-position of estrone.


2.5. Estrogen–RGD Peptide Conjugates Inhibit Body Weight Increase of Mice. To develop osteoporosis, female Kuiming mice weighing 30.7 \pm 3.1 g were subjected to abdominal ovariotomy (OVX) according to standard procedures.¹⁹ To compensate for possible effects of the surgical procedure, the mice of a sham group were subjected to an abdominorotomy. On the fifth day after surgery, the mice then received an intraperitoneal (i.p.) injection of an aqueous solution of carboxymethylcellulose (CMC; 2 μ L, 0.5 wt %), containing

Scheme 2. Preparation of 3- and 17-RGD Peptide Conjugates of Estradiol^a

^{*a*} Reagents: (I) succinic anhydride; (II) DCC, HOBt, **1**, **2**, or **3**; (III) Pt/H₂; (IV) ethyl bromoacetyl acetate; (V) NaOH. In **8** and **16**, $R_1 = Arg(NO_2)$ -Gly-Asp(OBzl)-Ser-OBzl; in **9** and **17**, $R_1 = Arg(NO_2)$ -Gly-Asp(OBzl)-Val-OBzl; in **10** and **18**, $R_1 = Arg(NO_2)$ -Gly-Asp(OBzl)-Phe-OBzl; in **11** and **19**, $R_2 = Arg$ -Gly-Asp-Ser-OH; in **12** and **20**, $R_2 = Arg$ -Gly-Asp-Val-OH; and in **13** and **21**, $R_2 = Arg$ -Gly-Asp-Phe-OH.

Scheme 3. Preparation of Estrone-3-RGD Peptide Conjugates^a

^{*a*} Reagents: (I) ethyl 2-bromoacetate; (II) NaOH; (III) DCC, HOBt, **1**, **2**, or **3**; (IV) H₂/Pd. In **24**, AA = Ser(Bzl); in **25** and **28**, AA = Val; in **26** and **29**, AA = Phe; and in **27**, AA = Ser.

Table 1. Effect of i.p. Injection of Estrogen-RGDAA on Body Weight
 of Mice^a

	before	after
	treatment	treatment
group	(g)	(g)
OVX	31.1 ± 2.2	37.2 ± 2.6
sham	30.0 ± 1.5	34.5 ± 2.9^{b}
estradiol	31.0 ± 2.6	34.1 ± 2.3^{b}
RGDS	30.7 ± 2.5	34.0 ± 2.4^{b}
estradiol + RGDS	30.6 ± 2.7	$33.9 \pm 2.7^{\circ}$
11	30.3 ± 1.8	35.4 ± 2.7^{b}
19	30.9 ± 1.5	35.2 ± 1.6^{b}
RGDV	30.3 ± 1.5	$33.4 \pm 2.5^{\circ}$
estradiol + RGDV	30.7 ± 2.0	$33.6 \pm 2.3^{\circ}$
12	30.4 ± 1.9	34.5 ± 2.7^{b}
20	30.5 ± 2.6	35.2 ± 2.5^{b}
RGDF	29.8 ± 1.7	$33.3 \pm 2.0^{\circ}$
estradiol + RGDF	30.5 ± 2.3	33.9 ± 1.9
13	29.8 ± 2.9	34.8 ± 2.7^{b}
21	30.1 ± 2.0	33.1 ± 2.2^{c}
estrone	30.4 ± 2.5	34.3 ± 2.1^{c}
estrone + RGDS	30.6 ± 2.1	34.4 ± 2.2^{c}
27	29.9 ± 1.9	32.9 ± 2.3^{c}
estrone + RGDV	30.1 ± 2.4	$33.5 \pm 2.5^{\circ}$
28	30.3 ± 2.1	34.1 ± 2.6^{b}
estrone + RGDF	31.0 ± 2.2	33.4 ± 2.3^{c}
29	30.4 ± 2.2	34.5 ± 2.8^{b}

^{*a*} Dose = 110.3 × 10⁻³ mmol/kg, n = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and P < 0.05 was considered significant. ^{*b*} Compared to OVX, P < 0.05. ^{*c*} Compared to OVX, P < 0.01.

estradiol, estrone, RGDS, RGDV, RGDF, a mixture of estradiol and RGDS, a mixture of estradiol and RGDV, a mixture of estradiol and RGDF, a mixture of estrone and RGDS, a mixture of estrone and RGDV, a mixture of estrone and RGDF, estradiol=17-RGD peptide conjugates (11–13), estradiol=3-RGD peptide conjugates (19–21), and estrone=3-RGD peptide conjugates (27–29; each at 110.3 × 10⁻³ mmol/kg). The mice were injected once daily for 4 weeks. On the day of the last administration, the mice were weighed and the body weights were recorded (Table 1). As shown, the data demonstrate that the surgical operation and the treatment with estrogen and estrogen=RGD peptide conjugates inhibits mouse body weight increase, which suggests that the inhibition of the increase of the body weight of mice is independent of the conjugations.

2.6. Estrogen-RGD Peptide Conjugates Decrease the Serum Levels of Calcium and ALP in Mice. To explore the effect of estrogen-RGD peptide conjugates on the content of calcium and ALP in the serum, blood was drawn by retrorbital puncture on the day after the last day of the 4 week dosing regime. The blood was allowed to stand at room temperature for 30 min and was then centrifuged (3000 g for 20 min). The serum was removed by pipet and stored at -20 °C and serum calcium content was measured using o-methylphenolphthalein, as previously described²⁰ (Table 2). The serum phosphorus content was measured using molybdenum blue, as previously described.²¹ The serum alkaline phosphatase (ALP) level was measured using a functional assay with disodium phenylphosphate as the substrate. The data listed in Table 2 indicate that the content of calcium in the serum is significantly decreased after administration of 11-13, 19-21, and 27-29, but is unchanged by treatment with estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixture of estrone and RGD peptides. Serum ALP levels were clearly reduced by the administration of estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixture of estrone and RGD peptides. However, the conjugates 11-13, 19-21, and 27-29 were far more effective at reducing ALP levels. The significantly

 Table 2. Effect of i.p. Injection of Estrogen-RGD Peptide Conjugates on Serum ALP Level, Serum Calcium Concentration, and Serum Phosphorus Concentration of Mice^a

	calcium	phosphorous	ALP
group	(mmol/L)	(mmol/L)	(U/L, king)
OVX	2.039 ± 0.0445	1.601 ± 0.00268	40.086 ± 2.884
sham	2.024 ± 0.0783	1.602 ± 0.00519	$34.171 \pm 3.341^{\circ}$
estradiol	2.013 ± 0.0382	1.601 ± 0.00521	35.286 ± 1.733^{c}
estradiol +	2.013 ± 0.0433	1.602 ± 0.00408	$36.328 \pm 2.113^{\circ}$
RGDS			
RGDS	2.010 ± 0.0417	1.603 ± 0.00371	$36.643 \pm 1.787^{\circ}$
11	2.002 ± 0.0271^{b}	1.602 ± 0.00385	32.771 ± 2.050^d
19	2.004 ± 0.0347^{b}	1.599 ± 0.00487	31.429 ± 1.837^{d}
estradiol +	2.012 ± 0.0389	1.603 ± 0.00417	$36.005 \pm 1.772^{\circ}$
RGDV			
RGDV	2.011 ± 0.0181	1.605 ± 0.00669	$35.614 \pm 1.486^{\circ}$
12	2.005 ± 0.0258^{b}	1.605 ± 0.00405	31.057 ± 0.996^d
20	2.003 ± 0.0270^{b}	1.600 ± 0.00492	30.514 ± 1.301^d
estradiol +	2.011 ± 0.0367	1.601 ± 0.00520	$36.084 \pm 1.890^{\circ}$
RGDF			
RGDF	2.012 ± 0.0324	1.599 ± 0.00733	$35.643 \pm 2.756^{\circ}$
13	2.005 ± 0.0258^{b}	1.605 ± 0.00498	31.486 ± 1.285^{d}
21	2.005 ± 0.0160^{b}	1.605 ± 0.00537	31.529 ± 1.676^d
estrone	2.012 ± 0.0175	1.601 ± 0.00417	36.271 ± 3.228^{c}
estrone +	2.013 ± 0.0441	1.603 ± 0.00439	36.204 ± 1.913^{c}
RGDS			
27	2.000 ± 0.0284^{b}	1.604 ± 0.00268	32.371 ± 1.910^{e}
estrone +	2.010 ± 0.0395	1.603 ± 0.00550	$35.970 \pm 1.983^{\circ}$
RGDV			
28	2.008 ± 0.0179^{b}	1.602 ± 0.00560	32.229 ± 1.467^{e}
estrone +	2.013 ± 0.0382	1.601 ± 0.00488	$36.433 \pm 1.936^{\circ}$
RGDF			
29	2.008 ± 0.0344^{b}	1.602 ± 0.00315	32.407 ± 2.137^{e}
a Dosage =	$= 110.3 \times 10^{-3} \text{ mm}$	n = 12 OVX	= ovariotomy The

^{*a*} Dosage = 110.3×10^{-3} mmol/kg, n = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to OVX, P < 0.05. ^{*c*} Compared to OVX, P < 0.01. ^{*d*} Compared to OVX, estradiol, and RGD peptides, P < 0.01. ^{*e*} Compared to OVX, estrone, and RGD peptides, P < 0.01.

higher inhibition of serum calcium and ALP levels in mice for estrogen-RGD peptide conjugates demonstrates that the conjugation of estrogen and RGD peptides is helpful for enhancing their corresponding inhibitions.

2.7. Estrogen-RGD Peptide Conjugates Inhibit Bone Loss of Mice. To evaluate the direct influence of the estrogen-RGD peptide conjugates on bone loss, the weights of dry femurs, the weights of femur ashes, and the lengths of femurs from the mice of all groups were measured. After body weighing and blood drawing, the mice were euthanized by anesthetization (pentobarbital sodium, 40.0 mg/kg, i.p.) followed by removal of the left femur. After complete removal of the muscle, the femur length was measured and the femurs were then defatted by immersion in a solution of chloroform-methanol (2:1) for 3 h (repeated 2 times). The femurs were then heated at 120 °C for 6 h, cooled, and weighed to record the dry weight. The femurs were then incinerated in a furnace at 800 °C for 8 h, cooled, and the residual ash was weighed. Dry femur weights listed in Table 3 indicate that estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixture of estrone and RGD peptides did not inhibit bone loss in the recipient mice. The weights of dry femurs from mice receiving estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixture of estrone and RGD peptides are significantly lower than that of the abdominorotomy-receiving mice (sham group). However, estrogen-RGD peptide conjugates did inhibit bone loss in the recipient mice, as the weights of dry femurs of the mice receiving 11-13, 19-21, and 27-29 are significantly higher than that of vehicle-receiving mice (OVX group) and no significant difference is found between the weights of dry femurs of the mice receiving estrogen-RGD peptide conjugates and the weight of

Table 3. Effect of i.p. Injection of Estrogen–RGD Peptide Conjugates on the Length of Femur and the Weight of Dry Femur and Femur Ash of Mice^a

group	wt of dry femur (mg)	wt of femur ash (mg)	length of femur (cm)
OVX	58.5 ± 3.94	17.8 ± 2.17	1.597 ± 0.0390
sham	$74.0 \pm 8.32^{\circ}$	42.9 ± 4.83^{c}	$1.646 \pm 0.0438^{\circ}$
estradiol	57.7 ± 6.96	$28.5\pm6.80^{\circ}$	1.630 ± 0.0646
estradiol + RGDS	58.2 ± 6.33	$27.9 \pm 5.10^{\circ}$	1.620 ± 0.0540
RGDS	59.8 ± 4.65	$27.8 \pm 4.06^{\circ}$	1.617 ± 0.0397
11	66.4 ± 5.38^{d}	34.4 ± 5.65^{g}	1.634 ± 0.0358^{b}
19	63.4 ± 6.39^{e}	37.0 ± 6.25^{g}	1.642 ± 0.0500^{b}
estradiol + RGDV	59.0 ± 6.37	$28.1 \pm 3.60^{\circ}$	1.618 ± 0.0523
RGDV	58.8 ± 4.65	27.8 ± 3.53^{c}	1.614 ± 0.0455
12	62.6 ± 3.68^{e}	35.8 ± 3.13^{g}	1.655 ± 0.0490^{c}
20	63.7 ± 6.27^{e}	40.0 ± 4.81^{g}	$1.640 \pm 0.0306^{\circ}$
estradiol + RGDF	59.5 ± 6.55	28.2 ± 3.59^{c}	1.621 ± 0.0451
RGDF	60.0 ± 6.49	22.5 ± 7.43^{b}	1.620 ± 0.0343
13	66.0 ± 5.48^{d}	34.8 ± 4.67^{g}	1.635 ± 0.0273^{b}
21	64.2 ± 5.32^{f}	35.8 ± 4.37^{g}	1.635 ± 0.0474^{b}
estrone	61.1 ± 5.87	20.8 ± 4.30^{b}	1.606 ± 0.0317
estrone + RGDS	60.8 ± 6.19	23.4 ± 4.50^{b}	1.600 ± 0.0522
27	66.9 ± 5.70^{d}	22.6 ± 2.97^c	1.634 ± 0.0459^{b}
estrone + RGDV	58.6 ± 5.89	26.2 ± 4.48^{b}	1.604 ± 0.0320
28	63.9 ± 7.10^{e}	21.9 ± 6.32^{b}	1.628 ± 0.0309^{b}
estrone + RGDF	59.7 ± 6.24	25.5 ± 6.01^{b}	1.606 ± 0.0340
29	65.9 ± 5.37^d	24.7 ± 4.53^{h}	1.639 ± 0.0456^{b}

^{*a*} Dosage = 110.3 × 10⁻³ mmol/kg, *n* = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and *p* < 0.05 was considered significant. ^{*b*} Compared to OVX, *P* < 0.05. ^{*c*} Compared to OVX, *P* < 0.01. ^{*d*} Compared to OVX and estradiol, *P* < 0.01, to estrone and RGD peptides, *P* < 0.05. ^{*e*} Compared to OVX, estradiol, and RGD peptides, *P* < 0.05. ^{*c*} Compared to OVX, *P* < 0.01, to estradiol and RGD peptides, *P* < 0.05. ^{*k*} Compared to OVX, *P* < 0.01, to estradiol and RGD peptides, *P* < 0.05. ^{*k*} Compared to OVX, *P* < 0.01, and to RGD peptides, *P* < 0.05. ^{*k*} Compared to OVX, *P* < 0.01, and to estrone, P < 0.05. ^{*k*} Compared to OVX, *P* < 0.01, and to estrone, P < 0.05.

dry femurs of sham group mice. The data in Table 3 indicate that though the femur ash weights of mice receiving estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixture of estrone and RGD peptides are significantly higher than that of vehicle receiving mice (OVX group), they are significantly less than that of mice receiving 11–13 and 19–21. Similarly, except the femur length of the mice receiving estrone, the mixtures of estrone and RGD peptides, estradiol, and the mixtures of estradiol and RGD peptides, the femur length of the mice receiving 11–13, 19–21, and 27–29 are significantly higher than that of the vehicle-receiving mice (OVX group). All of the data listed in Table 3 suggest that estrogen–RGD peptide conjugates 11–13, 19–21, and 27–29 are able to inhibit bone loss in OVX mice.

2.8. Effect of Estrogen-RGD Peptide Conjugates on Bone Calcium, Phosphorus Content, and Mineral Content. The femurs were then incinerated in a furnace at 800 °C for 8 h, cooled, and weighed to record the ash weight and calculate the ratio of the ash weight to dry femur weight (i.e., the mineral content of the femur). To investigate the influence of estrogen-RGD peptide conjugates on the content of calcium, phosphorus, and minerals in the mouse femurs, the weighed ashes of the left femurs were dissolved in hydrochloric acid (6 N, 0.5 mL) and diluted with ultrapure water (4.5 mL). An aliquot (0.05 mL) of the solution was drawn and diluted to 1 mL with ultrapure water. The calcium content of the aqueous solution was measured using o-methylphenolphthalein. The phosphorus content of the aqueous solution was measured by the method of molybdenum blue.²² Based on the measured data, the ratios of calcium and phosphorus in the ash were calculated. The data are listed in Table 4. As shown, the calcium, phosphorus, and mineral content in the femurs of the mice in the sham and the drug treatment groups are significantly higher than that of the

 Table 4. Effect of i.p. Injection of Estrogen-RGD Peptide Conjugates on the Calcium, Phosphorus, and Mineral Content of Mouse Femurs^a

	,,,		
group	calcium	phosphorous (%)	mineral (ratio)
group	(70)	(70)	(1410)
OVX	39.545 ± 2.551	22.951 ± 1.960	0.304 ± 0.0272
sham	53.213 ± 2.365^{c}	24.811 ± 1.049^{c}	0.487 ± 0.0922^{c}
estradiol	44.466 ± 3.041^{c}	24.995 ± 2.307^{b}	0.496 ± 0.0945^{c}
estradiol + RGDS	$43.903 \pm 2.402^{\circ}$	24.891 ± 2.067^{b}	0.413 ± 0.0557^{c}
RGDS	$43.480 \pm 2.331^{\circ}$	24.888 ± 2.059^{b}	$0.396 \pm 0.0460^{\circ}$
11	51.312 ± 2.602^{d}	24.920 ± 1.623^{b}	0.520 ± 0.0819^{c}
19	54.885 ± 1.668^{d}	24.949 ± 2.221^{b}	0.582 ± 0.0512^{f}
estradiol + RGDV	$43.009 \pm 2.055^{\circ}$	24.823 ± 2.217^{b}	0.402 ± 0.0406^{c}
RGDV	$42.739 \pm 1.816^{\circ}$	24.759 ± 2.267^{b}	0.394 ± 0.0411^{c}
12	53.078 ± 2.349^{d}	24.867 ± 1.536^{b}	0.625 ± 0.0399^d
20	58.350 ± 0.926^d	24.991 ± 1.338^{b}	0.630 ± 0.0690^d
estradiol + RGDF	$44.103 \pm 3.121^{\circ}$	24.765 ± 2.258^{b}	0.407 ± 0.0411^c
RGDF	$43.815 \pm 1.792^{\circ}$	24.585 ± 1.204^{b}	0.423 ± 0.0685^{c}
13	52.798 ± 1.376^{d}	24.665 ± 1.069^{b}	0.533 ± 0.0921^{c}
21	56.690 ± 1.474^{d}	$25.460 \pm 1.265^{\circ}$	0.585 ± 0.0555^{f}
estrone	$43.840 \pm 2.659^{\circ}$	23.979 ± 1.087	0.430 ± 0.0522^{c}
estrone + RGDS	$43.466 \pm 2.450^{\circ}$	24.756 ± 2.260^{b}	0.426 ± 0.0548^{c}
27	47.613 ± 1.891^{e}	24.399 ± 1.110^{b}	$0.438 \pm 0.0388^{\circ}$
estrone +	$43.634 \pm 2.569^{\circ}$	24.767 ± 1.309^{b}	$0.422 \pm 0.0681^{\circ}$
RGDV			
28	47.173 ± 1.772^{e}	24.750 ± 1.083^{b}	0.429 ± 0.0387^c
estrone +	$43.722 \pm 2.490^{\circ}$	24.766 ± 2.249^{b}	0.420 ± 0.0556^{c}
RGDF			
29	49.550 ± 2.436^{e}	24.588 ± 1.080^{b}	0.462 ± 0.0510^{c}

^{*a*} Dosage = 110.3×10^{-3} mmol/kg, n = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to OVX, P < 0.05. ^{*c*} Compared to OVX, P < 0.01. ^{*d*} Compared to OVX, estradiol, and RGD peptides, P < 0.01. ^{*e*} Compared to OVX, estradiol, and RGD peptides, P < 0.01. ^{*f*} Compared to OVX and RGD peptides, P < 0.01, and to estradiol, P < 0.05.

mice in OVX group. When compared to the mice receiving estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixtures of estrone and RGD peptides, the femurs of the mice receiving 11–13, 19–21, and 27–29 show significantly higher contents of calcium and the femurs of the mice receiving 12, 19, and 21 show significantly higher contents of mineral. Thus, the estrogen–RGD peptide conjugates substantially increase the content of calcium, phosphorus, and mineral in the femur. This is not only consistent with their inhibition of bone loss, but also with the advantage that resulted from the conjugation of estrogen and RGD peptides.

2.9. Effect of Estrogen-RGD Peptide Conjugates on Organ Weights. To examine the effect of estrogen-RGD peptide conjugates on organ weights, the removed lungs, livers, spleens, and uteri were weighed directly and the weights are listed in Table 5. The data indicate that though the liver weight of the mice receiving estradiol is occasionally higher than that of the mice in the OVX group, the weights of lungs, livers, and spleens of the mice in all groups show no significant difference. However, the weights of the uteri of mice receiving estradiol, estrone, the mixtures of estradiol and RGD peptides, and the mixtures of estrone and RGD peptides were significantly heigher than that of OVX, sham and estrogen-RGD peptide conjugates receiving mice. These results indicate that estrogen-RGD peptide conjugates exhibited no observable influence on endometrial cell hyperplasia, which reveals that the conjugation of estrogen and RGD peptides is helpful for eliminating the dose-related side effects of estrogen.

2.10. Dose-Related Inhibition of Mouse Bone Loss by Estrogen-RGD Peptide Conjugates 19–21. To evaluate the effect of the dose of estrogen-RGD peptide conjugates on bone

Table 5. Effect of i.p. Injection of Estrogen-RGD Peptide Conjugates on the Weight of Lung, Liver, Spleen, and Uterus of Mice^a

~~~~~	lung	liver	spleen	uterus
group	(mg)	(g)	(mg)	(mg)
OVX	$163.0 \pm 23.1$	$1.329 \pm 0.156$	$130.0 \pm 31.9$	$89.0 \pm 24.9^{\circ}$
sham	$164.0 \pm 24.7$	$1.367 \pm 0.198$	$151.0 \pm 41.0$	$91.5 \pm 30.0^{\circ}$
estradiol	$168.0 \pm 30.8$	$1.565 \pm 0.199^{b}$	$151.0 \pm 35.7$	$177.1 \pm 43.6^{b}$
estradiol + RGDS	$165.0 \pm 26.1$	$1.372 \pm 0.190$	$148.0 \pm 32.3$	$178.0 \pm 42.5^{b}$
RGDS	$168.0 \pm 22.7$	$1.295 \pm 0.186$	$138.0 \pm 37.6$	$71.0 \pm 52.2^{\circ}$
11	$151.0 \pm 18.8$	$1.371 \pm 0.178$	$130.0 \pm 37.2$	$55.5 \pm 34.4^{d}$
19	$173.0 \pm 20.1$	$1.377 \pm 0.185$	$124.0 \pm 36.4$	$42.5 \pm 18.7^{d}$
estradiol + RGDV	$167.0 \pm 24.7$	$1.370 \pm 0.187$	$129.0 \pm 33.6$	$177.7 \pm 42.7^{b}$
RGDV	$171.0 \pm 25.9$	$1.153 \pm 0.110^{b}$	$127.0 \pm 33.0$	$61.1 \pm 28.7^{d}$
12	$167.0 \pm 27.9$	$1.353 \pm 0.221$	$143.0 \pm 36.8$	$69.4 \pm 33.6^{d}$
20	$162.0 \pm 19.0$	$1.363 \pm 0.133$	$132.0 \pm 45.0$	$50.3 \pm 31.1^{d}$
estradiol + RGDF	$165.0 \pm 24.4$	$1.422 \pm 0.183$	$130.0 \pm 25.8$	$178.2 \pm 44.1^{b}$
RGDF	$163.0 \pm 17.7$	$1.413 \pm 0.122$	$134.0 \pm 25.5$	$69.8 \pm 41.9^{d}$
13	$164.0 \pm 24.5$	$1.391 \pm 0.129$	$142.0 \pm 32.0$	$71.2 \pm 26.0^{d}$
21	$169.0 \pm 30.3$	$1.395 \pm 0.160$	$131.0 \pm 34.4$	$55.4 \pm 28.8^{d}$
estrone	$176.0 \pm 25.9$	$1.318 \pm 0.113$	$150.0 \pm 31.0$	$141.9 \pm 45.7^{b}$
estrone + RGDS	$170.0 \pm 24.9$	$1.331 \pm 0.159$	$146.0 \pm 32.3$	$143.2 \pm 46.0^{b}$
27	$173.0 \pm 16.4$	$1.347 \pm 0.146$	$129.0 \pm 26.8$	$63.3 \pm 43.4^{d}$
estrone + RGDV	$172.0 \pm 23.7$	$1.387 \pm 0.155$	$144.0 \pm 33.0$	$145.5 \pm 47.0^{b}$
28	$168.0 \pm 10.7$	$1.389 \pm 0.139$	$131.0 \pm 37.2$	$51.9 \pm 32.0^{d}$
estrone + RGDF	$169.0 \pm 22.3$	$1.410 \pm 0.187$	$139.0 \pm 40.7$	$143.7 \pm 41.2^{b}$
29	$179.0 \pm 16.0$	$1.458 \pm 0.199$	$140.0 \pm 41.1$	$55.8 \pm 32.6^{d}$

^{*a*} Dosage =  $110.3 \times 10^{-3}$  mmol/kg, *n* = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and *p* < 0.05 was considered significant. ^{*b*} Compared to OVX, *P* < 0.01. ^{*c*} Compared to estradiol and estrone, *P* < 0.01. ^{*d*} Compared to OVX, estradiol, and estrone, P < 0.01.

**Table 6.** Effect of 19-21 at Different Doses (i.p.) on the Femur Length, the Dry Femur Weight, and the Femur Ash Weight of Recipient Mice^{*a*}

group	dosage (mmol/kg)	femur weight (mg)	femur ash weight (mg)	femur length (cm)
19 20	$\begin{array}{c} 110.3\times10^{-3}\\ 55.15\times10^{-3}\\ 11.03\times10^{-3}\\ 110.3\times10^{-3}\\ 55.15\times10^{-3} \end{array}$	$\begin{array}{c} 63.4 \pm 6.25 \\ 56.3 \pm 6.99^{b} \\ 48.8 \pm 4.97^{c} \\ 63.7 \pm 6.27 \\ 57.5 \pm 4.87^{b} \end{array}$	$\begin{array}{c} 37.0 \pm 6.25 \\ 31.6 \pm 4.43^{b} \\ 18.1 \pm 4.23^{c} \\ 40.0 \pm 4.81 \\ 32.3 \pm 4.70^{b} \end{array}$	$\begin{array}{c} 1.642 \pm 0.0500 \\ 1.622 \pm 0.0430 \\ 1.642 \pm 0.0421 \\ 1.640 \pm 0.0306 \\ 1.643 \pm 0.0300 \end{array}$
21	$\begin{array}{c} 11.03 \times 10^{-3} \\ 110.3 \times 10^{-3} \\ 55.15 \times 10^{-3} \\ 11.03 \times 10^{-3} \end{array}$	$\begin{array}{c} 50.9 \pm 6.75^c \\ 61.2 \pm 6.74 \\ 53.9 \pm 4.08^b \\ 46.9 \pm 6.74^c \end{array}$	$\begin{array}{c} 20.6 \pm 7.33^c \\ 35.8 \pm 4.37 \\ 31.6 \pm 2.87^b \\ 20.8 \pm 7.11^c \end{array}$	$\begin{array}{c} 1.618 \pm 0.0520 \\ 1.623 \pm 0.0475 \\ 1.624 \pm 0.0580 \\ 1.647 \pm 0.0414 \end{array}$

^{*a*} n = 12. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to 110.3 × 10⁻³ mmol/kg, P < 0.05. ^{*c*} Compared to 55.15 × 10⁻³ mmol/kg, P < 0.01.

loss, the weights of dry femurs, weights of femur ashes, the lengths of femurs, the calcium content of femurs, the phosphorus content of femurs, the mineral content of femurs, the serum calcium content, the serum phosphorus content of and the serum ALP activity of the mice receiving 19-21, the estradiol-RGD peptide conjugates with higher anti-osteoporosis potency at a dose of  $110.3 \times 10^{-3}$  mmol/kg (high dose),  $55.15 \times 10^{-3}$  mmol/ kg (moderate dose) and,  $11.03 \times 10^{-3}$  mmol/kg (low dose), respectively, were measured. The data are listed in Tables 6-8. The data in Table 6 demonstrate that the femur length, the dry femur weight, and the femur ash weight of the mice receiving a high dose of 19–21 are significantly higher than that of the mice receiving a moderate dose of 19-21. On the other hand, the femur length, the dry femur weight, and the femur ash weight of the mice receiving a moderate dose of 19-21 are also significantly higher than that of the mice receiving a low dose of 19–21. Similarly, the data in Table 7 demonstrate that the femur calcium content, the femur phosphorus content, and the femur mineral content of the mice receiving a high dose of 19-**21** are significantly higher than that of the mice receiving a moderate dose of 19-21, and the femur calcium content the femur phosphorus content and the femur mineral content of the mice receiving a moderate dose of 19-21 are significantly

higher than that of the mice receiving a low dose of 19-21. The same dose-related effects of 19-21 on the serum calcium content, the serum phosphorus content, and the serum ALP activity are also revealed in the data of Table 8. All the data support that the effect of 19-21 on bone loss follows a dose-dependent manner.

**2.11.** Dose Effects of Estradiol–RGD Peptide Conjugates 19–21 on Uterine Weights of Mice. To examine the risk of of dose-related side effects, the weight of the liver, the lung, the spleen, and especially the uterine of the mice receiving 19– 21, the estradiol–RGD peptide conjugates with a higher antiosteoporosis potency, at a dose of  $110.3 \times 10^{-3}$  mmol/kg (high dose),  $55.15 \times 10^{-3}$  mmol/kg (moderate dose), and  $11.03 \times 10^{-3}$  mmol/kg (low dose), respectively, were measured. The data are listed in Table 9. It is clear that the weight of the liver, the lung, the spleen, and the uterine of the mice receiving high, moderate, and low doses of 19-21 show no significant difference. The results indicate that the anti-osteoporosis action of estradiol–RGD peptide conjugates followed a dose-dependent manner and was accompanied with no observable effects on endometrial cell hyperplasia.

2.12. Oral Administration of Estrogen-RGD Peptide Conjugates Inhibited Bone Loss of Mice. To explore if estrogen-RGD peptide conjugates are orally active, 11-13 and 19-20 were administered orally. The female Kuiming mice weighing  $30.7 \pm 3.1$  g were subjected to abdominal OVX, as mentioned above. To compensate for the possible effects of the surgical procedure, the mice of a sham group were subjected to an abdominorotomy. On the fifth day after surgery, the mice then received an oral administration of an aqueous solution of CMC (0.2 mL, 0.5 wt %), containing estradiol, a mixture of estradiol and RGDS, estradiol-17-RGD peptide conjugates (11-13) and estradiol-3-RGD peptide conjugates (19-21; each at  $110.3 \times 10^{-3}$  mmol/Kg). The mice were orally administered once daily for 4 weeks. On the day of the last administration, the blood of the mice was drawn by retrorbital puncture. The blood was allowed to stand at room temperature for 30 min and was then centrifuged (3000 g for 20 min). The serum was removed by pipet and stored at -20 °C and the serum calcium

Table 7. Effect of 19-21 at Different Doses (i.p.) on Femur Calcium Content, Femur Phosphorus Content, and Femur Mineral Content of Micea

group	dosage (mmol/kg)	calcium (%)	phosphorous (%)	mineral (ratio)
19	$110.3 \times 10^{-3}$	$54.885 \pm 1.668$	$24.949 \pm 2.221$	$0.582 \pm 0.0512$
	$55.15 \times 10^{-3}$	$52.076 \pm 2.399^{\circ}$	$24.274 \pm 2.394$	$0.479 \pm 0.0686^{\circ}$
	$11.03 \times 10^{-3}$	$41.548 \pm 3.792^{d}$	$23.984 \pm 2.711$	$0.310 \pm 0.0776^d$
20	$110.3 \times 10^{-3}$	$58.353 \pm 0.926$	$24.991 \pm 2.338$	$0.630 \pm 0.0690$
	$55.15 \times 10^{-3}$	$57.130 \pm 1.113^{\circ}$	$24.315 \pm 2.123$	$0.539 \pm 0.0973^{b}$
	$11.03 \times 10^{-3}$	$42.110 \pm 3.759^{d}$	$23.978 \pm 3.076$	$0.345 \pm 0.0120^d$
21	$110.3 \times 10^{-3}$	$56.693 \pm 1.474$	$25.460 \pm 3.265$	$0.585 \pm 0.0555$
	$55.15 \times 10^{-3}$	$54.493 \pm 1.381^{c}$	$24.845 \pm 2.214$	$0.504 \pm 0.0401^{c}$
	$11.03 \times 10^{-3}$	$42.855 \pm 3.447^d$	$24.347 \pm 1.869$	$0.338 \pm 0.0121^d$

^{*a*} n = 12. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to 110.3 × 10⁻³ mmol/kg, P < 0.05. ^{*c*} Compared to 110.3 × 10⁻³ mmol/kg, P < 0.01.

Table 8. Effect of 19–21 at Different Doses (i.p.) on Serum ALP Level, the Serum Calcium Concentration, and Serum Phosphorus Concentration of Mice^a

group	dosage (mmol/kg)	calcium (mmol/L)	phosphorous (mmol/L)	ALP (U/L, king)
19	$110.3 \times 10^{-3}$	$2.014 \pm 0.0347$	$1.599 \pm 0.00487$	$31.429 \pm 1.837$
	$55.15 \times 10^{-3}$	$2.047 \pm 0.0198^{b}$	$1.607 \pm 0.00356$	$33.616 \pm 2.643^{b}$
	$11.03 \times 10^{-3}$	$2.087 \pm 0.0254^{e}$	$1.611 \pm 0.00265$	$40.327 \pm 1.526^{e}$
20	$110.3 \times 10^{-3}$	$2.005 \pm 0.0270$	$1.600 \pm 0.00492$	$30.514 \pm 1.301$
	$55.15 \times 10^{-3}$	$2.084 \pm 0.0483^{\circ}$	$1.586 \pm 0.00274$	$32.786 \pm 2.143^{\circ}$
	$11.03 \times 10^{-3}$	$2.117 \pm 0.0115^d$	$1.605 \pm 0.00324$	$38.457 \pm 1.546^{e}$
21	$110.3 \times 10^{-3}$	$2.0150 \pm 0.016$	$1.605 \pm 0.00537$	$31.529 \pm 1.676$
	$55.15 \times 10^{-3}$	$2.040 \pm 0.0369^{b}$	$1.602 \pm 0.00314$	$33.746 \pm 1.724^{\circ}$
	$11.03 \times 10^{-3}$	$2.093 \pm 0.0176^{e}$	$1.600 \pm 0.00264$	$38.643 \pm 1.204^{e}$

^{*a*} n = 12. The statistical analysis of the data was carried out by use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to 110.3 × 10⁻³ mmol/kg, P < 0.05. ^{*c*} Compared to 110.3 × 10⁻³ mmol/kg, P < 0.01. ^{*d*} Compared to 55.15 × 10⁻³ mmol/kg, P < 0.05. ^{*e*} Compared to 55.15 × 10⁻³ mmol/kg, P < 0.01.

Table 9. Effect of 19-21 at Different Doses (i.p.) on the Liver Weight, Lung Weight, Spleen Weight, and Uterine Weight of the Mice^a

dosage (mmol/kg)	liver weight (g)	lung weight (mg)	spleen weight (mg)	uterine weight (mg)
$\begin{array}{c} 110.3 \times 10^{-3} \\ 55.15 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.377 \pm 0.185 \\ 1.397 \pm 0.231 \end{array}$	$\begin{array}{c} 173.0 \pm 20.1 \\ 167.0 \pm 33.3 \end{array}$	$\begin{array}{c} 124.0 \pm 36.0 \\ 136.0 \pm 46.3 \end{array}$	$42.5 \pm 18.7$ $48.6 \pm 28.2$
$11.03 \times 10^{-3}$ $110.3 \times 10^{-3}$	$\begin{array}{c} 1.424 \pm 0.179 \\ 1.363 \pm 0.133 \end{array}$	$\begin{array}{c} 181.0 \pm 24.9 \\ 182.0 \pm 19.0 \end{array}$	$\begin{array}{c} 125.0 \pm 22.9 \\ 132.0 \pm 45.0 \end{array}$	$52.8 \pm 38.8$ $50.3 \pm 31.1$
$55.15 \times 10^{-3}$ $11.03 \times 10^{-3}$	$\begin{array}{c} 1.462 \pm 0.165 \\ 1.477 \pm 0.227 \end{array}$	$179.0 \pm 33.2$ $188.0 \pm 56.0$	$140.0 \pm 40.6$ $156.0 \pm 53.0$	$57.6 \pm 43.9$ $55.7 \pm 35.5$
$110.3 \times 10^{-3}$ 55.15 × 10^{-3}	$\begin{array}{c} 1.395 \pm 0.160 \\ 1.407 \pm 0.227 \\ 1.575 \pm 0.220 \end{array}$	$169.0 \pm 30.3$ $155.0 \pm 45.7$ $174.0 \pm 22.2$	$131.0 \pm 34.0$ $123.0 \pm 36.8$ $145.0 \pm 62.0$	$55.4 \pm 28.8$ $55.3 \pm 19.1$ $60.6 \pm 47.3$
	(mmol/kg) 110.3 × 10 ⁻³ 55.15 × 10 ⁻³ 11.03 × 10 ⁻³ 110.3 × 10 ⁻³ 55.15 × 10 ⁻³ 11.03 × 10 ⁻³ 11.03 × 10 ⁻³ 110.3 × 10 ⁻³	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

a n = 12; the statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant.

**Table 10.** Effect of Orally Administered Estradiol-RGD PeptideConjugates on Femur Weight, Femur Ash Weight and Femur Length of $Mice^a$ 

group	weight of	weight of	length of
	dry femur	femur ash	femur
	(mg)	(mg)	(cm)
OVX sham estradiol estradiol + RGDS 11 estradiol + RGDV 12 estradiol + RGDF 13 19 20 21	$58.8 \pm 4.15 73.3 \pm 7.18^{c} 63.1 \pm 6.54 62.9 \pm 5.20 68.8 \pm 6.42^{d} 63.0 \pm 5.14 68.2 \pm 5.32^{d} 62.6 \pm 5.24 62.7 \pm 4.77^{b} 68.6 \pm 5.67^{d} 68.4 \pm 4.68^{d} 63.1 \pm 5.15^{b}$	$18.0 \pm 2.20 \\ 42.4 \pm 4.31^{c} \\ 22.2 \pm 4.23 \\ 22.3 \pm 3.97 \\ 29.3 \pm 4.54^{e} \\ 22.0 \pm 4.30 \\ 33.0 \pm 5.81^{e} \\ 21.7 \pm 4.11 \\ 30.0 \pm 4.67^{e} \\ 30.4 \pm 6.18^{e} \\ 33.7 \pm 7.46^{e} \\ 28.7 \pm 3.89^{e} \\ \end{array}$	$\begin{array}{c} 1.601 \pm 0.0394 \\ 1.642 \pm 0.0440^c \\ 1.622 \pm 0.0447 \\ 1.620 \pm 0.0512 \\ 1.654 \pm 0.0550^c \\ 1.621 \pm 0.0509 \\ 1.645 \pm 0.0470^c \\ 1.610 \pm 0.0439 \\ 1.638 \pm 0.0420^b \\ 1.635 \pm 0.0362^b \\ 1.614 \pm 0.0329 \\ 1.626 \pm 0.0296 \end{array}$

^{*a*} Dosage =  $110.3 \times 10^{-3}$  mmol/kg, n = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to OVX, P < 0.05. ^{*c*} Compared to OVX, P < 0.01. ^{*d*} Compared to OVX, P < 0.01, and to estradiol, P < 0.05. ^{*e*} Compared to OVX and estradiol, P < 0.01.

content, the serum phosphorus content, and the serum ALP level were measured as mentioned above. After blood drawing, the mice were euthanized by anesthetization (pentobarbital sodium, 40.0 mg/kg, i.p.), followed by removal of the left femur. After the treatment of the left femurs by use of the same procedure as mentioned above, dry femur weights, femur ash weights, femur length, femur calcium content, femur phosphorus content, and femur mineral content of the mice receiving vehicle (CMC), estradiol, a mixture of estradiol and RGD peptides, 11-13 and 19-21 were tested. The data are listed in Tables 10-12. The data of the tables indicate that though oral administration of estradiol is unable to inhibit the bone loss of the mice, the oral administration of 11-13 and 19-21 is able to inhibit the bone loss of the mice. The femur weight, femur ash weight, femur length, femur calcium content, femur phosphorus content, and femur mineral content of the mice orally administered with 11-13 and 19-21 are significantly higher than that of the mice orally administered with vehicle (OVX group), estradiol, and a mixture of estradiol and RGD peptides. The results suggest that the estradiol-3-RGD peptide conjugates and estradiol-17-RGD peptide conjugates are both orally active.

2.13. Oral Administration of Estrogen–RGD Peptide Conjugates Gave No Influence on the Uterus of the Mice. To examine the effect of oral administration of estradiol–RGD peptide conjugates on the weights of organs, the removed lungs, livers, spleens, and uteri of the mice orally receiving  $110.3 \times$ 

 Table 11. Effect of Orally Administered Estradiol–RGD Peptide

 Conjugates on Femur Calcium Content, Femur Phosphorus Content, and

 Femur Mineral Content of Mice^a

group	calcium (%)	phosphorous (%)	mineral (ratio, %)
OVX	$39.606 \pm 2.563$	$22.972 \pm 1.958$	$0.371 \pm 0.0779$
sham	$53.400 \pm 2.566^{d}$	$25.101 \pm 1.925^{\circ}$	$0.520 \pm 0.0811^d$
estradiol	$41.729 \pm 2.670$	$24.530 \pm 2.173$	$0.411 \pm 0.0822$
estradiol +	$41.699 \pm 2.701$	$24.499 \pm 2.007$	$0.413 \pm 0.0746$
RGDS			
11	$51.201 \pm 2.653^{d}$	$24.885 \pm 2.300^{b}$	$0.515 \pm 0.0807^{c}$
estradiol +	$41.694 \pm 2.658$	$24.532 \pm 2.187$	$0.408 \pm 0.0818$
RGDV			
12	$52.003 \pm 2.776^{d}$	$24.879 \pm 1.963^{b}$	$0.525 \pm 0.0795^d$
estradiol +	$41.705 \pm 2.712$	$24.465 \pm 2.185$	$0.409 \pm 0.0791$
RGDF			
13	$51.903 \pm 2.822^{d}$	$24.869 \pm 2.126^{b}$	$0.516 \pm 0.0812^d$
19	$51.988 \pm 2.689^d$	$24.994 \pm 2.211^{b}$	$0.522 \pm 0.0783^d$
20	$52.197 \pm 2.765^{d}$	$24.997 \pm 2.312^{b}$	$0.519 \pm 0.0794^{d}$
21	$53.001 \pm 2.699^{d}$	$25.532 \pm 2.209^{c}$	$0.525 \pm 0.0859^d$

^{*a*} Dosage =  $110.3 \times 10^{-3}$  mmol/kg, n = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to OVX, P < 0.05. ^{*c*} Compared to OVX, P < 0.01. ^{*d*} Compared to OVX and estradiol, P < 0.01.

 Table 12.
 Effect of Oral Estradiol-RGD Peptide Conjugates on Serum

 Calcium Content, Serum Phosphorus Content, and ALP Level of Mice^a

group	calcium (%)	phosphorous (%)	ALP (U/L, king)
OVX	$2.026 \pm 0.0450$	$1.604 \pm 0.00471$	$40.223 \pm 2.947$
sham	$2.033 \pm 0.0482$	$1.606 \pm 0.00519$	$34.691 \pm 3.155^{b}$
estradiol	$2.022 \pm 0.0469$	$1.605 \pm 0.00488$	$37.705 \pm 3.221$
estradiol +	$2.030 \pm 0.0671$	$1.602 \pm 0.00530$	$38.114 \pm 3.196$
RGDS			
11	$2.040 \pm 0.0490$	$1.604 \pm 0.00497$	$35.400 \pm 3.134^{b}$
estradiol +	$2.029 \pm 0.0477$	$1.605 \pm 0.00525$	$38.006 \pm 3.200$
RGDV			
12	$2.033 \pm 0.0474$	$1.606 \pm 0.00499$	$33.411 \pm 2.780^{\circ}$
estradiol +	$2.029 \pm 0.0465$	$1.603 \pm 0.00519$	$37.995 \pm 3.100$
RGDF			
13	$2.036 \pm 0.0476$	$1.602 \pm 0.00590$	$35.511 \pm 2.939^{b}$
19	$2.032 \pm 0.0489$	$1.604 \pm 0.00438$	$35.211 \pm 2.896^{b}$
20	$2.035 \pm 0.0491$	$1.606 \pm 0.00496$	$34.521 \pm 2.488^d$
21	$2.041 \pm 0.0526$	$1.603 \pm 0.00319$	$33.700 \pm 2.682^{\circ}$

^{*a*} Dosage =  $110.3 \times 10^{-3}$  mmol/kg, n = 12. OVX = ovariotomy. The statistical analysis of the data was carried out by the use of an ANOVA test, and p < 0.05 was considered significant. ^{*b*} Compared to OVX, P < 0.01. ^{*c*} Compared to OVX and estradiol, P < 0.01. ^{*d*} Compared to OVX, P < 0.01, and to estradiol, P < 0.05.

 
 Table 13. Effect of Oral Estradiol-RGD Peptide Conjugates on the Mice Uterus Weight

group	lung (mg)	liver (g)	spleen (mg)	uterus (mg)
OVX sham estradiol 11 12 13 19 20 21	$\begin{array}{c} 165.0\pm23.9\\ 164.0\pm24.2\\ 168.0\pm25.1\\ 161.0\pm25.5\\ 167.0\pm24.9\\ 167.0\pm24.5\\ 166.0\pm24.8\\ 163.0\pm24.4\\ 165.0\pm24.0 \end{array}$	$\begin{array}{c} 1.332\pm 0.176\\ 1.337\pm 0.191\\ 1.335\pm 0.198\\ 1.331\pm 0.189\\ 1.340\pm 0.188\\ 1.338\pm 0.199\\ 1.329\pm 0.194\\ 1.337\pm 0.199\\ 1.339\pm 0.188\\ \end{array}$	$\begin{array}{c} 130.0\pm 31.9\\ 131.0\pm 41.5\\ 141.0\pm 35.9\\ 135.0\pm 35.5\\ 133.0\pm 36.7\\ 142.0\pm 38.0\\ 138.0\pm 33.5\\ 134.0\pm 37.6\\ 135.0\pm 38.7\\ \end{array}$	$\begin{array}{c} 89.0\pm24.9\\ 41.5\pm30.1\\ 40.1\pm18.4\\ 36.7\pm13.0\\ 50.7\pm31.9\\ 38.2\pm10.8\\ 43.2\pm23.6\\ 40.7\pm19.6\\ 47.5\pm30.5 \end{array}$
	110.0 10	-3 1/1	12 01/11	• .

^{*a*} Dosage =  $110.3 \times 10^{-3}$  mmol/kg, n = 12. OVX = ovariotomy.

10⁻³ mmol/kg of estradiol, **11–13**, and **19–21** were directly weighed and the data are listed in Table 13. As shown in Table 13, the weights of lungs, livers, spleens, and uteri of the mice of all groups exhibit no significant difference. These results suggest that the anti-osteoporosis action of oral administration of estradiol–RGD peptide conjugates had no observable effects on endometrial cell hyperplasia even though an obvious anti-osteoporosis action was observed.

2.14. Conclusion. In conclusion, through the conjugation of estrogen and RGD peptides, the present paper provides a modification method for estrogen to improve the efficacy of HRT. By the in vivo assay data of nine novel estrogen-RGD peptide conjugates, it is recognized that this kind of conjugation is a promising new approach by which anti-osteoperotic drugs with improved therapeutic efficacy might be developed for use in HRT. For instance, in a mouse model, i.p. administration of the estradiol-3-RGD, estradiol-17-RGD, and estrone-3-RGD peptide conjugates resulted in decreased serum concentrations of calcium and the level of ALP, as well as increased levels of calcium, phosphorus, and minerals in the femur. Furthermore, the anti-osteoporosis action of these compounds followed a dosedependent manner and was accompanied with no observable effects on endometrial cell hyperplasia. In addition to these compounds all exhibiting biological activity when administered by the i.p. route, we were particularly pleased to note that the estradiol-3-RGD and estradiol-17-RGD peptide conjugates were both orally active.

#### 3. Experimental Section

**3.1. Chemical Synthesis.** The protected amino acids (AAs) with L-configuration were purchased from Sigma Chemical Co. All coupling and deprotection reactions were carried out under anhydrous conditions. Chromatography was performed on Qingdao silica gel H. The purity of the intermediates and the products was confirmed by TLC (Merck silica gel plates of type 60 F₂₅₄, 0.25 mm layer thickness) and HPLC (Waters, C₁₈ column 4.6 × 150 mm). The AA analysis was determined by Hitachi 835-50 instrument. FAB-MS were determined by VG-ZAB-MS high-resolution GC/MS/DS and HP ES-5989x. Optical rotations were determined on Schmidt+Haensch Polartronic D instrument.

**3.1.1. General Procedure for Removal of the Boc of the C-Terminal Component.** The solution of 0.20 mmol of Boc-protected compound in 2 mL of hydrogen chloride in ethyl acetate (4 mol/L) was stirred at room temperature for 3 h. The reaction mixture was evaporated to remove the solvent. The residue was dissolved in 10 mL of ethyl acetate, and the solution was evaporated to dryness. The resultant solid was used directly for a subsequent coupling reaction.

3.1.2. Boc-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl. (1) Boc-Asp(OBzl)-Ser(Bzl)-OBzl. To a solution of 420 mg (1.30 mmol) of Boc-Asp(OBzl)-OH in 2 mL of anhydrous THF, 176 mg (1.30 mmol) of HOBt and 268 mg (1.30 mmol) of DCC were added. The mixture was stirred at 0 °C for 0.5 h to provide solution A. At 0 °C, to a solution of 418 mg (1.30 mmol) of HCl·H-Ser(Bzl)-OBzl in 2 mL of anhydrous THF, 155 µL of N-methylmorpholine was added, and the mixture was stirred for 10 min to provide solution B. At 0 °C, solutions A and B were mixed. The solution was adjusted with N-methylmorpholine to pH 8.5. The reaction mixture was stirred at room temperature for 8 h, and TLC (CHCl₃/ CH₃OH, 10:1) indicated the complete disappearance of Boc-Asp-(OBzl)-OH. On evaporation, the residue was dissolved in 50 mL of ethyl acetate. The solution was washed successively with 5% sodium bicarbonate, 5% citric acid, and saturated sodium chloride and the organic phase was dried over anhydrous sodium sulfate. Filtration, evaporation under reduced pressure, and purification by chromatography (CHCl₃/CH₃OH, 30:1) provided 722 mg (94%) of the title compound as a colorless powder. ESI-MS (m/e) 591  $[M + H]^{+}$ 

(2) HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl. A solution of 500 mg (1.30 mmol) of Boc-Asp(OBzl)-Ser(Bzl)-OBzl in 3 mL of hydrogen chloride in ethyl acetate (4 mol/L) was stirred at room temperature for 2 h, and TLC (CHCl₃/CH₃OH, 10:1) indicated the complete disappearance of Boc-Asp(OBzl)-Ser(Bzl)-OBzl. The reaction mixture was evaporated to remove the solvent. The residue was dissolved in 10 mL of ethyl acetate, and the solution was evaporated to dryness. The resulting solid was used for a subsequent coupling reaction directly. ESI-MS (m/e) 591 [M + H]⁺.

(3) Boc-Gly-Asp(OBzl)-Ser(Bzl)-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 227 mg (1.30 mmol) of Boc-Gly-OH and 767 mg (1.30 mmol) of HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl, 765 mg (91%) of the title compound was obtained as a colorless powder. ESI-MS (m/e) 648 [M + H]⁺.

(4) HCl·H-Gly-Asp(OBzl)-Ser(Bzl)-OBzl. When the same procedure for preparing HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 841 mg (1.30 mmol) of Boc-Gly-Asp(OBzl)-Ser(Bzl)-OBzl, 663 mg (93%) of the title compound was obtained. The resulting solid was used for a subsequent coupling reaction directly. ESI-MS (m/e) 548 [M + H]⁺.

(5) Boc-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 415 mg (1.30 mmol) of Boc-Arg(NO₂)-OH and 758 mg (1.30 mmol) of HCl+H-Gly-Asp(OBzl)-Ser(Bzl)-OBzl, 982 mg (89%) of the title compound was obtained as a colorless powder. IR (KBr) 3350, 3345, 3323, 3031, 1681, 1600, 1503, 1462, 1445, 1393, 1370, 740, 696 cm⁻¹. ¹H NMR (DMSO-*d*₆) 8.951 (s, 1H), 8.401 (s, 1H), 8.237 (s, 1H), 8.110 (s, 1H), 8.010 (s, 1H), 7.350 (t, J = 7.86 Hz, 1H), 7.343 (t, J = 7.88 Hz, 1H), 7.337 (t, J = 7.84Hz, 1H), 7.304 (t, J = 7.88 Hz, 2H), 7.293 (t, J = 7.88 Hz, 2H), 7.253 (t, J = 7.84 Hz, 2H), 7.246 (d, J = 7.84 Hz, 2H), 7.186 (d, J = 7.82 Hz, 2H), 7.175 (d, J = 7.82 Hz, 2H), 7.038 (s, 1H), 6.746 (s, 1H), 5.166 (s, 2H), 5.149 (s, 2H), 5.135 (s, 2H), 4.902 (dt, J =6.31 Hz, J = 6.60 Hz, 1H, 4.714 (t, J = 6.50 Hz, 1H), 4.703 (t, J = 6.50 Hz, 1H)), 4.703 (t, J = 6.50 Hz, 1H))) J = 6.44 Hz, 1H), 3.967 (s, 2H), 3.771 (d, J = 6.44 Hz, 2H), 2.830 (d, J = 6.60 Hz, 2H), 2.627 (t, J = 6.48 Hz, 2H), 1.840 (m, J =4.42 Hz, 2H), 1.627 (m, J = 6.36 Hz, 2H), 1.386 (s, 9H). ESI-MS (*m/e*) 849 [M + H]⁺. Mp 72–74 °C.  $[\alpha]^{20}_{D}$  5.0 (*c* 1.0, CHCl₃/ MeOH 10:1). AA analysis: calcd, Arg/Gly/Asp/Ser = 1.00:1.00: 1.00:1.00; found, Arg/Gly/Asp/Ser = 0.98:1.00:1.04:0.97.

**3.1.3.** Boc-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl. (1) Boc-Asp-(OBzl)-Val-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 420 mg (1.30 mmol) of Boc-Asp(OBzl)-OH and 315 mg (1.30 mmol) of HCl·H-Val-OBzl, 632 mg (95%) of the title compound was obtained as a colorless powder. ESI-MS (m/e) 513 [M + H]⁺.

(2) HCl·H-Asp(OBzl)-Val-OBzl. When the same procedure for preparing HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 666 mg (1.30 mmol) of Boc-Asp(OBzl)-Val-OBzl, 505 mg (94%) of the title compound was obtained as a colorless powder. The resulting solid was used directly for a subsequent coupling reaction. ESI-MS (m/e) 413 [M + H]⁺.

(3) Boc-Gly-Asp(OBzl)-Phe-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 227 mg (1.30 mmol) of Boc-Gly-OH and 582 mg (1.30 mmol) of HCl-H-Asp(OBzl)-Val-OBzl, 711 mg (96%) of the title compound was obtained as a colorless powder. Mp 77–79 °C; ESI-MS (m/e) 571 [M + H]⁺.

(4) HCl·H-Gly-Asp(OBzl)-Val-OBzl. When the same procedure for preparing HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 741 mg (1.30 mmol) of Boc-Gly-Asp(OBzl)-Val-OBzl, 581 mg (95%) of the title compound was obtained. The resulting solid was used directly for a subsequent coupling reaction. ESI-MS (m/e) 471 [M + H]⁺.

(5) Boc-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 415 mg (1.30 mmol) of Boc-Arg(NO₂)-OH and 658 mg (1.30 mmol) of HCl·H-Gly-Asp(OBzl)-Val-OBzl, 901 mg (90%) of the title compound was obtained as a colorless powder. Mp 95–97 °C. IR (KBr) 3347, 3340, 3323, 3030, 1680, 1603, 1504, 1460, 1446, 1395, 1372, 747, 696 cm⁻¹. ¹H NMR (DMSO-*d*₆) 8.942 (s, 1H), 8.386 (s, 1H), 8.223 (s, 1H), 8.085 (s, 1H), 8.011 (s, 1H), 7.336 (t, J = 7.85 Hz, 1H), 7.330 (t, J = 7.86 Hz, 2H), 7.240 (d, J = 7.85 Hz, 2H), 7.184 (d, J = 7.86 Hz, 2H), 7.035 (s, 1H), 6.743 (s, 1H), 5.130 (s, 2H), 5.129 (s, 2H), 5.001 (dt, J = 6.30 Hz, J = 6.61 Hz, 1H), 4.887 (d, J = 6.48 Hz, 1H), 4.423 (d, J = 6.42 Hz, 1H), 4.104 (d, J = 4.70 Hz, 2H), 3.078 (m, J = 4.14 Hz, 1H), 2.833 (d, J = 6.62 Hz, 2H), 2.631 (t, J = 6.47 Hz, 2H), 1.843 (m, J = 4.44

Hz, 2H), 1.629 (m, J = 6.37 Hz, 2H), 1.015 (d, J = 4.14 Hz, 6H), 1.388 (s, 9H). ESI-MS (*m/e*) 771 [M + H]⁺. [ $\alpha$ ]²⁰_D 9.0 (*c* 1.0, CHCl₃/MeOH 10:1). AA analysis: calcd, Arg/Gly/Asp/Val = 1.00: 1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.97:1.00:0.98:0.98.

**3.1.4.** Boc-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl. (1) Boc-Asp-(OBzl)-Phe-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 420 mg (1.30 mmol) of Boc-Asp(OBzl)-OH and 376 mg (1.30 mmol) of HCl·H-Phe-OBzl, 626 mg (96%) of the title compound was obtained as a colorless powder. Mp 88–90 °C, ESI-MS (m/e) 561 [M + H]⁺.

(2) HCl·H-Asp(OBzl)-Phe-OBzl. When the same procedure for preparing HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 728 mg (1.30 mmol) of Boc-Asp(OBzl)-Phe-OBzl, 571 mg (95%) of the title compound was obtained as a colorless powder. The resulting solid was used directly for subsequent coupling reaction. ESI-MS (m/e) 461  $[M + H]^+$ .

(3) Boc-Gly-Asp(OBzl)-Val-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 227 mg (1.30 mmol) of Boc-Gly-OH and 645 mg (1.30 mmol) of HCl• H-Asp(OBzl)-Val-OBzl, 754 mg (94%) of the title compound was obtained as a colorless powder. Mp 72–74 °C. ESI-MS (m/e) 618 [M + H]⁺.

(4) HCl·H-Gly-Asp(OBzl)-Phe-OBzl. When the same procedure for preparing HCl·H-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 802 mg (1.30 mmol) of Boc-Gly-Asp(OBzl)-Phe-OBzl, 633 mg (94%) of the title compound was obtained as a colorless powder. The resulting solid was used directly for a subsequent coupling reaction. ESI-MS (m/e) 518 [M + H]⁺.

(5) Boc-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl. When the same procedure for preparing Boc-Asp(OBzl)-Ser(Bzl)-OBzl was used, from 415 mg (1.30 mmol) of Boc-Arg(NO₂)-OH and 719 mg (1.30 mmol) of HCl+H-Gly-Asp(OBzl)-Phe-OBzl, 926 mg (87%) of the title compound was obtained as a colorless powder. Mp 148-150 °C. IR (KBr) 3350, 3342, 3326, 3030, 1682, 1601, 1500, 1463, 1444, 1392, 1374, 748, 702 cm⁻¹. ¹H NMR (DMSO-*d*₆) 8.933 (s, 1H), 8.375 (s, 1H), 8.222 (s, 1H), 8.084 (s, 1H), 8.001 (s, 1H), 7.338 (t, J = 7.83 Hz, 1H), 7.333 (t, J = 7.84 Hz, 1H), 7.328 (t, J = 7.82 Hz, 1H), 7.305 (t, J = 7.83 Hz, 2H), 7.290 (t, J = 7.82Hz, 2H), 7.274 (t, J = 7.84 Hz, 2H), 7.240 (d, J = 7.84 Hz, 2H), 7.180 (d, J = 7.83 Hz, 2H), 7.176 (d, J = 7.82 Hz, 2H), 7.035 (s, 1H), 6.743 (s, 1H), 5.125 (s, 2H), 5.133 (s, 2H), 5.007 (dt, J =6.30 Hz, J = 6.56 Hz, 1H), 4.880 (t, J = 6.51 Hz, 1H), 4.416 (t, J = 6.40 Hz, 1H), 4.100 (d, J = 4.70 Hz, 2H), 3.168 (d, J =6.40 Hz, 2H), 2.827 (d, J = 6.50 Hz, 2H), 2.618 (t, J = 6.48 Hz, 2H), 1.844 (m, J = 4.45 Hz, 2H), 1.622 (m, J = 6.30 Hz, 2H), 1.374 (s, 9H). ESI-MS (m/e) 819 [M + H]⁺.  $[\alpha]^{20}$  7.0 (c 1.0, CHCl₃/MeOH = 10:1). AA analysis: calcd, Arg/Gly/Asp/Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.98:1.00:1.04:0.97.

**3.1.5. General Procedure for the Removal of NO₂ and Bzl of the Protective Peptides.** A suspension of 1.00 mmol of NO₂ and Bzl protected peptides, 25 mg of Pd/C (5%), and 30 mL of formic acid in methanol (4.4%) was agitated with hydrogen (0.02 Mpa) at room temperature for 24 h. The reaction mixture was filtrated. The filtrate was evaporated, the residue was triturated with ether, and the resulting solid was purified on a Sephadex G-10 column with water as the mobil phase. The collected fractions were lyophilized to provide the corresponding peptide.

**3.1.6. H-Arg-Gly-Asp-Ser-OH. (1) HCl·H-Arg(NO₂)-Gly-Asp-(OBzl)-Ser(Bzl)-OBzl.** When the general Boc deprotection procedure was used, from 848 mg (1.00 mmol) of Boc-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl, 710 mg (93%) of the title compound was obtained. ESI-MS (m/e) 739 [M + H]⁺.

(2) **H-Arg-Gly-Asp-Ser-OH** (4). When the general procedure for catalytic hydrogenation of the protected peptides was used, from 774 mg (1.00 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl, 399 mg (92%) of the title compound was obtained as a colorless powder. Mp 183–187 °C. IR (KBr) 3451, 3348, 3340, 3325, 2455, 1680 cm⁻¹. ¹H NMR (DMSO-*d*₆) 10.89 (s, 1H), 10.80 (s, 1H), 8.760 (s, 2H), 8.270 (s, 1H), 8.213 (s, 1H), 8.006 (s, 1H), 7.238 (s, 2H), 6.668 (s, 1H), 6.543 (s, 1H), 4.670 (t, J = 6.62 Hz, 1H), 4.528 (t, J = 6.52 Hz, 1H), 4.512 (t, J = 6.40 Hz, 1H), 4.113

(d, J = 6.40 Hz, 2H), 3.816 (s, 2H), 2.793 (d, J = 6.40 Hz, 2H), 2.633 (t, J = 4.40 Hz, 2H), 2.049 (s, 1H), 1.768 (m, J = 4.40 Hz, 2H), 1.605 (m, J = 6.01 Hz, 2H). ESI-MS (*m*/*e*) 434 [M + H]⁺. [ $\alpha$ ]²⁰_D 6.0 (*c* 1.0, H₂O). AA analysis: calcd, Arg/Gly/Asp/Ser = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Ser = 0.96:1.00:1.05:0.99.

**3.1.7. H-Arg-Gly-Asp-Val-OH. (1) HCl·H-Arg(NO₂)-Gly-Asp-(OBzl)-Val-OBzl.** When the general Boc deprotection procedure was used, from 770 mg (1.00 mmol) of Boc-Arg(NO₂)-Gly-Asp-(OBzl)-Val-OBzl, 664 mg (94%) of the title compound was obtained. ESI-MS (m/e) 671 [M + H]⁺.

(2) H-Arg-Gly-Asp-Val-OH (5). When the general procedure for catalytic hydrogenation of the protected peptides was used, from 706 mg (1.00 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl, 396 mg (89%) of the title compound was obtained. Mp 180–182 °C. IR (KBr) 3349, 3337, 3330, 2430, 1682, 1390, 1372 cm⁻¹. ¹H NMR (DMSO-*d*₆) 10.899 (s, 1H), 10.880 (s, 1H), 8.661 (s, 2H), 8.299 (s, 1H), 8.217 (s, 1H), 8.053 (s, 1H), 7.234 (s, 2H), 6.700 (s, 1H), 6.537 (s, 1H), 5.003 (d, *J* = 6.59 Hz, 1H), 4.837 (d, *J* = 6.46 Hz, 1H), 4.395 (d, *J* = 6.40 Hz, 1H), 3.997 (d, *J* = 4.73 Hz, 2H), 2.891 (m, *J* = 6.37 Hz, 1H), 2.782 (d, *J* = 6.40 Hz, 2H), 2.628 (t, *J* = 6.45 Hz, 2H), 1.763 (m, *J* = 6.44 Hz, 2H), 1.604 (m, *J* = 6.35 Hz, 2H), 1.009 (d, *J* = 6.37 Hz, 6H). ESI-MS (*m*/*e*) 446 [M + H]⁺. [α]²⁰_D 3.0 (*c* 1.0, H₂O). AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.96: 1.00:0.98:0.97.

**3.1.8.** H-Arg-Gly-Asp-Phe-OH. (1) HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl. When the general Boc deprotection procedure was used, from 834 mg (1.00 mmol) of Boc-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl, 700 mg (93%) of the title compound was obtained. ESI-MS (m/e) 718 [M + H]⁺.

(2) H-Arg-Gly-Asp-Phe-OH (6). When the general procedure for catalytic hydrogenation of the protected peptides was used, from 734 mg (1.00 mmol) of Boc-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl, 454 mg (92%) of the title compound was obtained. Mp 158-160 °C. IR (KBr) 3353, 3345, 3322, 2422, 1684, 1601, 1500, 1460, 1450, 700 cm⁻¹. ¹H NMR (DMSO-d₆) 10.975 (s, 1H), 10.901 (s, 1H), 8.620 (s, 2H), 8.251 (s, 1H), 8.174 (s, 1H), 8.032 (s, 1H), 7.312 (s, 2H), 7.227 (t, J = 7.80 Hz, 2H), 7.156 (d, J = 7.80 Hz, 2H), 7.098 (t, J = 7.80 Hz, 1H), 6.927 (s, 1H), 6.746 (s, 1H), 4.968 (t, J = 6.47 Hz, 1H), 4.815 (d, J = 6.40 Hz, 1H), 4.433 (t, J =6.42 Hz, 1H), 4.102 (d, J = 4.70 Hz, 2H), 3.009 (d, J = 6.42 Hz, 2H), 2.801 (d, J = 6.47 Hz, 2H), 2.614 (t, J = 6.45 Hz, 2H), 1.825 (m, J = 5.99 Hz, 2H), 1.617 (m, J = 6.46 Hz, 2H). ESI-MS (m/e) 494  $[M + H]^+$ .  $[\alpha]^{20}_D$  4.0 (c 2.0, H₂O). AA analysis: calcd, Arg/ Gly/Asp/Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.96:1.00:0.98:0.98

**3.1.9. Estradiol-17-** $\beta$ **-O-carbonylpropionic Acid (7).** To a warm solution of 100 mg (1.0 mmol) of succinic anhydride in 1 mL of pyridine, 100 mg (0.37 mmol) of estradiol was added. The reaction mixture was stirred at 90 °C for 10 h and TLC (chloroform/ methanol/acetic acid, 20:1:0.4) indicated complete disappearance of estradiol. The reaction mixture was cooled to room temperature, mixed with 20 mL of ice water and 75 mg of sodium chloride, and stirred vigorously. The mixture was then extracted with ethyl acetate and the ethyl acetate phase was separated and dried with anhydrous Na₂SO₄. After filtration, the filtrate was evaporation at reduced pressure to give a yellow syrup, which was dissolved in 1 mL of methanol. The solution was adjusted to pH 8.5-9.0 with cold aqueous K₂CO₃ (10%) and stirred at room temperature for 18 h. The solution was adjusted to a pH of 6.0 with acetic acid (50%) and evaporated at reduced pressure. The residue was mixed with 2 mL of ice water and 75 mg of sodium chloride. The mixture was extracted with 50 mL of ethyl acetate, and the ethyl acetate phase was separated. After washing with ice water three times and drying with anhydrous Na₂SO₄, the ethyl acetate phase was evaporated to give a yellowish syrup. The syrup was kept in a refrigerater for 18 h to give 137 mg (95%) of the title compound as a colorless powder. Mp 148-150 °C. IR (KBr) 3253, 3035, 2867, 1742, 1602, 1504, 1463, 1372, 876, 831 cm⁻¹. ¹H NMR (DMSO-*d*₆) 12.192 (s, 1H), 8.993 (s, 1H), 7.043 (d, J = 7.50 Hz, 1H), 6.517 (d, J = 7.50 Hz, 1H), 6,400 (s,1H), 4.618 (t, J = 4.78 Hz, 1H), 2.972 (t, J = 4.55

Hz, 2H), 2.910 (m, J = 4.22 Hz, 1H), 2.883 (t, J = 5.11 Hz, 2H), 2.780 (t, J = 5.11 Hz, 2H), 2.028 (m, J = 4.78 Hz, 2H), 2.015 (m, J = 4.28 Hz, 2H), 1.871 (m, J = 4.20 Hz, 1H), 1.840 (m, J = 4.42Hz, 2H), 1.761 (m, J = 4.55 Hz, 2H), 1.703 (m, J = 4.282 Hz, 1H), 1.654 (m, J = 4.72 Hz, 2H), 0.774 (s, 3H). ESI-MS(*m*/*e*) 373 [M + H]⁺. [ $\alpha$ ]²⁰_D 35.0 (*c* 1.00, THF). Anal. Calcd for C₂₂H₂₈O₅: C, 70.94; H, 7.58. Found: C, 71.10; H, 7.69.

3.1.10. Estradiol-17- $\beta$ -O-carbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl (8). At 0 °C, to the solution of 88 mg (0.24 mmol) of estradiol-17- $\beta$ -O-carbonylpropionic acid and 32 mg (0.24 mmol) of HOBt in 5 mL of anhydrous THF, 49 mg (0.24 mmol) of DCC was added. The mixture was stirred at 0 °C for 30 min and then the solution of 185 mg (0.24 mmol) of HCl+H-Arg-(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl was added. The reaction mixture was adjusted to pH 8.0 and stirred at room temperature for 8 h, and TLC (ethyl acetate/petroleum, 6:1) indicated complete disappearance of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl. The reaction mixture was filtered, and the filtrate was evaporated under vacuum. The residue was dissolved in 20 mL of chloroform and washed with citric acid aqueous solution (5%), sodium bicarbonate aqueous solution (5%), and saturated NaCl aqueous solution succesively, then dried with anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by flash chromatography (chloroform/methanol, 10:1) to give 158 mg (61%) of the title compound as a colorless powder. Mp 143-145 °C. IR (KBr) 3353, 3342, 3325, 3084, 3070, 3033, 1745, 1687, 1603, 1501, 1460, 1445, 1397, 1368, 742, 694 cm⁻¹. ¹H NMR (DMSO-*d*₆) 8.942 (s, 1H), 8.389 (s, 1H), 8.223 (s, 1H), 8.087 (s, 1H), 8.004 (s, 1H), 7.344 (t, J = 7.88 Hz, 1H), 7.341 (t, J = 7.90 Hz, 1H), 7.334 (t, J = 7.86 Hz, 1H), 7.301 (t, J = 7.90 Hz, 2H), 7.291 (t, J =7.90 Hz, 2H), 7.250 (t, J = 7.86 Hz, 2H), 7.243 (d, J = 7.86 Hz, 2H), 7.185 (d, J = 7.84 Hz, 2H), 7.172 (d, J = 7.84 Hz, 2H), 7.046 (d, J = 7.52 Hz, 1H), 7.035 (s, 1H), 6.744 (s, 1H), 6.515 (d, J = 7.51 Hz, 1H), 6.403 (s, 1H), 6.372 (s, 1H), 5.164 (s, 2H),5.147 (s, 2H), 5.132 (s, 2H), 4.900 (dt, *J* = 6.30 Hz, *J* = 6.62 Hz, 1H), 4.711 (t, J = 6.54 Hz, 1H), 4.700 (t, J = 6.47 Hz, 1H), 4.612 (t, J = 4.76 Hz, 1H), 3.964 (d, J = 6.02 Hz, 2H), 3.768 (d, J =4.12 Hz, 2H), 2.974 (t, J = 4.56 Hz, 2H), 2.915 (m, J = 4.25 Hz, 1H), 2.880 (t, *J* = 5.16 Hz, 2H), 2.824 (d, *J* = 6.62 Hz, 2H), 2.783 (t, J = 5.13 Hz, 2H), 2.624 (t, J = 6.50 Hz, 2H), 2.024 (m, J = 6.50 Hz)4.76 Hz, 2H), 2.017 (m, J = 4.31 Hz, 2H), 1.874 (m, J = 4.22 Hz, 1H), 1.843 (m, J = 4.40 Hz, 2H), 1.765 (m, J = 4.52 Hz, 2H), 1.723 (m, J = 6.32 Hz, 2H), 1.700 (m, J = 4.28 Hz, 1H), 1.656(m, J = 4.70 Hz, 2H), 1.625 (m, J = 6.38 Hz, 2H), 0.776 (s, 3H).  $[\alpha]^{20}$  20.0 (c 1.00, CHCl₃/MeOH, 10:1). ESI-MS 1103 [M + H]⁺. Anal. Calcd for C₅₈H₇₀N₈O₁₄: C, 63.14; H, 6.40; N, 10.16. Found: C, 63.40; H, 6.58; N, 10.00. AA analysis: calcd, Arg/Gly/Asp/Ser = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Ser = 0.97:1.00:1.07: 0.98

3.1.11. Estradiol-17- $\beta$ -O-carbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl (9). When the same procedure as that used in the preparation of 8 was used, from 121 mg (0.33 mmol) of estradiol-17- $\beta$ -O-carbonylpropinic acid and 230 mg (0.33 mmol) of HCl+H-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl, 177 mg (53%) of the title compound was obtained as a colorless powder. Mp 151-153 °C. IR (KBr) 3350, 3344, 3326, 3087, 3071, 3032, 1746, 1684, 1601, 1500, 1462, 1448, 1386, 1370, 746, 698 cm⁻¹. ¹H NMR (DMSO-d₆) 8.940 (s, 1H), 8.385 (s, 1H), 8.220 (s, 1H), 8.083 (s, 1H), 8.007 (s, 1H), 7.338 (t, J = 7.87 Hz, 1H), 7.332 (t, J =7.88 Hz, 1H), 7.304 (t, J = 7.87 Hz, 2H), 7.294 (t, J = 7.86 Hz, 2H), 7.241 (d, J = 7.87 Hz, 2H), 7.186 (d, J = 7.85 Hz, 2H), 7.044 (d, J = 7.54 Hz, 1H), 7.037 (s, 1H), 6.746 (s, 1H), 6.517 (d, J = 7.53 Hz, 1H), 6.401 (s, 1H), 6.370 (s, 1H), 5.127 (s, 2H),5.135 (s, 2H), 5.007 (dt, J = 6.32 Hz, J = 6.60 Hz, 1H), 4.892 (d, J = 6.51 Hz, 1H), 4.534 (d, J = 6.50 Hz, 1H), 4.421 (d, J = 6.50 Hz, 100 Hz)6.45 Hz, 1H), 4.106 (d, J = 4.73 Hz, 2H), 3.071 (m, J = 4.12 Hz, 1H), 2.970 (t, J = 4.54 Hz, 2H), 2.911 (m, J = 4.26 Hz, 1H), 2.882 (t, J = 5.15 Hz, 2H), 2.825 (d, J = 6.60 Hz, 2H), 2.784 (t, J = 5.14 Hz, 2H), 2.620 (t, J = 6.51 Hz, 2H), 2.025 (m, J =4.75 Hz, 2H), 2.014 (m, J = 4.30 Hz, 2H), 1.870 (m, J = 4.20 Hz, 1H), 1.844 (m, J = 4.42 Hz, 2H), 1.763 (m, J = 4.50 Hz, 2H), 1.724 (m, J = 6.33 Hz, 2H), 1.702 (m, J = 4.29 Hz, 1H), 1.653 (m, J = 4.72 Hz, 2H), 1.621 (m, J = 6.35 Hz, 2H), 1.012 (d, J = 4.12 Hz, 6H), 0.779 (s, 3H). Anal. Calcd for C₅₃H₆₈N₈O₁₃: C, 62.09; H, 6.69; N, 10.93. Found: C, 61.92; H, 6.51; N, 11.12. AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.98:1.00:0.97:0.98. [α]²⁰_D 30.0 (*c* 1.00, CHCl₃/MeOH, 10:1). ESI-MS 1025 [M + H]⁺.

3.1.12. Estradiol-17-β-O-carbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl (10). When the same procedure as that used in the preparation of 8 was used, from 39 mg (0.11 mmol) of estradiol-17- $\beta$ -O-carbonylpropionic acid and 78 mg (0.11 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl, 65 mg (53%) of the title compound was obtained as a colorless powder. Mp 156-158 °C. IR (KBr) 3352, 3345, 3323, 3084, 3068, 3030, 1744, 1680, 1603, 1502, 1465, 1446, 1390, 1364, 745, 701 cm⁻¹. ¹H NMR (DMSO-d₆) 8.935 (s, 1H), 8.377 (s, 1H), 8.225 (s, 1H), 8.087 (s, 1H), 8.002 (s, 1H), 7.340 (t, J = 7.85 Hz, 1H), 7.336 (t, J =7.86 Hz, 1H), 7.330 (t, J = 7.84 Hz, 1H), 7.307 (t, J = 7.85 Hz, 2H), 7.292 (t, J = 7.84 Hz, 2H), 7.272 (t, J = 7.80 Hz, 2H), 7.243 (d, J = 7.86 Hz, 2H), 7.184 (d, J = 7.83 Hz, 2H), 7.177 (d, J =7.80 Hz, 2H), 7.040 (d, J = 7.55 Hz, 1H), 7.032 (s, 1H), 6.741 (s, 1H), 6.509 (d, J = 7.51 Hz, 1H), 6.403 (s, 1H), 6.368 (s, 1H), 5.124 (s, 2H), 5.131 (s, 2H), 5.011 (dt, J = 6.33 Hz, J = 6.58 Hz, 1H), 4.886 (t, J = 6.50 Hz, 1H), 4.530 (t, J = 6.51 Hz, 1H), 4.417 (t, J = 6.42 Hz, 1H), 4.101 (d, J = 4.72 Hz, 2H), 3.165 (d, J =6.45 Hz, 2H), 2.967 (t, J = 4.55 Hz, 2H), 2.907 (m, J = 4.27 Hz, 1H), 2.879 (t, J = 5.14 Hz, 2H), 2.822 (d, J = 6.55 Hz, 2H), 2.780  $(t, J = 5.15 \text{ Hz}, 2\text{H}), 2.611 (t, J = 6.50 \text{ Hz}, 2\text{H}), 2.027 (m, J = 6.50 \text{ Hz}, 2\text{Hz}), 2.027 (m, J = 6.50 \text{ Hz}), 2.027 (m, J = 6.50 \text{ Hz}), 2.027 (m, J = 6.50 \text{ Hz}), 3.02 \text{$ 4.73 Hz, 2H), 2.017 (m, J = 4.32 Hz, 2H), 1.869 (m, J = 4.22 Hz, 1H), 1.843 (m, J = 4.43 Hz, 2H), 1.760 (m, J = 4.52 Hz, 2H), 1.725 (m, J = 6.30 Hz, 2H), 1.700 (m, J = 4.27 Hz, 1H), 1.655 (m, J = 4.27 Hz, 10Hz, 10(m, J = 4.70 Hz, 2H), 1.617 (m, J = 6.32 Hz, 2H), 0.824 (s, 3H).  $[\alpha]^{20}$  23.0 (c 1.00, CHCl₃/MeOH, 10:1). ESI-MS 1073 [M + H]⁺. Anal. Calcd for C₅₇H₆₈N₈O₁₃: C, 63.79; H, 6.39; N, 10.44. Found: C, 63.52; H, 6.23; N, 10.61. AA analysis: calcd, Arg/Gly/Asp/ Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.97:1.00:1.05:0.98.

3.1.13. Estradiol-17-β-O-carbonylpropionyl-Arg-Gly-Asp-Ser-**OH** (11). A suspension of 100 mg (0.091 mmol) of estradiol-17- $\beta$ -O-carbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl (8), 15 mg of Pd/C (10%), 3 mL of methanol, and 1 mL of THF were stirred at room temperature. To this stirred suspension, hydrogen was bubbled for 24 h and TLC (ethyl acetate/petroleum, 6:1) indicated complete disappearance of 8. The reaction mixture was filtered, and the filtrate was evaporated under vacuum. The residue was triturated with ether and the colorless powder was purified on a Sephadex LH 20 column (10-30% ethanol). The desirable fraction was evaporated under vacuum to give 44 mg (62%) of the title compound as a colorless powder. Mp 178-180 °C. IR (KBr) 3440, 3351, 3345, 3323, 3031, 1693, 1604, 1506, 1465, 1442, 746, 700 cm⁻¹. ¹H NMR (DMSO-*d*₆) 9.072 (s, 1H), 9.068 (s, 1H), 9.063 (s, 1H), 8.043 (s, 1H), 8.035 (s, 1H), 8.017 (s, 1H), 8.004 (s, 2H), 7.241 (s, 2H), 7.044 (d, J = 7.50 Hz, 1H), 7.039 (s, 1H), 6.751 (s, 1H), 6.518 (d, J = 7.50 Hz, 1H), 6.407 (s, 1H), 4.854 (dt, J = 6.32 Hz, J = 6.60 Hz, 1 H, 4.683 (t, J = 6.53 Hz, 1 H), 4.603 (t, J = 6.53 Hz, 1 H)), 4.603 (t, J = 6.53 Hz, 1 H))) J = 4.74 Hz, 1H), 4.590 (t, J = 6.45 Hz, 1H), 4.021 (d, J = 6.44Hz, 2H), 3.960 (d, J = 6.00 Hz, 2H), 2.972 (t, J = 4.55 Hz, 2H), 2.913 (m, J = 4.26 Hz, 1H), 2.879 (t, J = 5.15 Hz, 2H), 2.820 (d, J = 6.60 Hz, 2H), 2.778 (t, J = 5.12 Hz, 2H), 2.602 (t, J = 6.52Hz, 2H), 2.025 (m, J = 4.75 Hz, 2H), 2.016 (m, J = 4.32 Hz, 2H), 1.870 (m, J = 4.23 Hz, 1H), 1.841 (m, J = 4.42 Hz, 2H), 1.763 (m, J = 4.53 Hz, 2H), 1.721 (m, J = 6.30 Hz, 2H), 1.702 (m, J = 6.30 Hz, 2Hz), 1.702 (m, J = 6.30 Hz), 1.702 (m, J = 64.27 Hz, 1H), 1.653 (m, J = 4.72 Hz, 2H), 1.622 (m, J = 6.35 Hz, 2H), 0.773 (s, 3H).  $[\alpha]^{20}$ _D 50.0 (*c* 1.00, MeOH). ESI-MS 788 [M + H]⁺. Anal. Calcd for C₃₇H₅₃N₇O₁₂: C, 56.41; H, 6.78; N, 12.44. Found: C, 56.60; H, 6.92; N, 12.26. AA analysis: calcd, Arg/Gly/ Asp/Ser = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Ser = 1.02:1.00:1.01:0.97.

**3.1.14. Estradiol-17-\beta-O-carbonylpropinyl-Arg-Gly-Asp-Val-OH (12).** When the same procedure as that used in the preparation of **11** was used, from 100 mg (0.098 mmol) of estradiol-17- $\beta$ -O-

carbonylpropinyl-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl (9), 54 mg (68%) of the title compound was obtained as a colorless powder. Mp 193-195 °C. IR (KBr) 3360, 3357, 3348, 3030, 1689, 1603, 1501, 1460, 1445, 1382, 1373, 749, 703 cm⁻¹. ¹H NMR (DMSOd₆) 9.155 (s, 1H), 9.127 (s, 1H), 9.032 (s, 1H), 8.226 (s, 1H), 8.203 (s, 1H), 8.075 (s, 1H), 8.002 (s, 1H), 7.225 (s, 2H), 7.040 (d, J =7.54 Hz, 1H), 7.039 (s, 1H), 6.722 (s, 1H), 6.512 (s, 1H), 6.449 (d, J = 7.50 Hz, 1H), 4.867 (d, J = 6.52 Hz, 1H), 4.611 (t, J =6.32 Hz, 1H), 4.532 (d, J = 6.51 Hz, 1H), 4.423 (d, J = 6.43 Hz, 1H), 4.101 (d, *J* = 4.74 Hz, 2H), 2.962 (t, *J* = 4.56 Hz, 2H), 2.920 (m, J = 4.13 Hz, 1H), 2.903 (m, J = 4.27 Hz, 1H), 2.880 (t, J =5.14 Hz, 2H), 2.822 (d, J = 6.57 Hz, 2H), 2.780 (t, J = 5.15 Hz, 2H), 2.614 (t, J = 6.50 Hz, 2H), 2.027 (m, J = 4.76 Hz, 2H), 2.016 (m, J = 4.32 Hz, 2H), 1.866 (m, J = 4.21 Hz, 1H), 1.845 (m, J = 4.43 Hz, 2H), 1.760 (m, J = 4.51 Hz, 2H), 1.720 (m, J = 6.30 Hz, 2H), 1.700 (m, *J* = 4.29 Hz, 1H), 1.655 (m, *J* = 4.70 Hz, 2H), 1.617 (m, J = 6.34 Hz, 2H), 0.862 (d, J = 4.15 Hz, 6H), 0.754 (s, 3H). Anal. Calcd for C₃₉H₅₇N₇O₁₁: C, 58.56; H, 7.18; N, 12.26. Found: C, 58.75; H, 7.32; N, 12.45. AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Val= 0.99:1.00:1.03:0.97. [ $\alpha$ ]²⁰_D 56.0 (*c* 0.5, MeOH). ESI-MS (*m/e*)  $800 [M + H]^+$ .

**3.1.15.** Estradiol-17- $\beta$ -O-carbonylpropionyl-Arg-Gly-Asp-Phe-OH(13). When the same procedure as that used in the preparation of 11 was used, from 100 mg (0.093 mmol) of estradiol-17-β-O-carbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl (10), 46 mg (58%) of the title compound was obtained as a colorless powder. Mp 196-198 °C. IR (KBr) 3391, 3382, 3377, 3032, 1681, 1605, 1505, 1462, 743, 700 cm⁻¹. ¹H NMR (DMSO-d₆) 9.065 (s, 1H), 9.054 (s, 1H), 9.045 (s, 1H), 8.061 (s, 1H), 8.035 (s, 1H), 8.020 (s, 1H), 8.001 (s, 2H), 7.233 (s, 2H), 7.116 (t, J = 7.81 Hz, 2H), 7.075 (d, J = 7.80 Hz, 2H), 7.010 (t, J = 7.79 Hz, 1H), 7.006 (s, 1H), 6.955 (d, J = 7.56 Hz, 1H), 6.900 (s, 1H), 6.432 (d, J =7.50 Hz, 1H), 4.910 (dt, J = 6.30 Hz, J = 6.55 Hz, 1H), 4.870 (t, J = 6.52 Hz, 1H), 4.846 (t, J = 6.50 Hz, 1H), 4.500 (t, J =6.43 Hz, 1H), 4.122 (d, J = 4.70 Hz, 2H), 3.042 (d, J = 6.43 Hz, 2H), 2.963 (t, J = 4.53 Hz, 2H), 2.910 (m, J = 4.28 Hz, 1H), 2.872 (t, J = 5.16 Hz, 2H), 2.820 (d, J = 6.56 Hz, 2H), 2.776 (t, J = 5.16 Hz, 2H), 2.593 (t, J = 6.52 Hz, 2H), 2.024 (m, J = 4.70Hz, 2H), 2.014 (m, J = 4.34 Hz, 2H), 1.865 (m, J = 4.24 Hz, 1H), 1.840 (m, J = 4.42 Hz, 2H), 1.755 (m, J = 4.53 Hz, 2H), 1.720 (m, J = 6.32 Hz, 2H), 1.702 (m, J = 4.26 Hz, 1H), 1.656 (m, J =4.71 Hz, 2H), 1.613 (m, J = 6.30 Hz, 2H), 0.821 (s, 3H).  $[\alpha]^{20}$ _D 45.0 (c 0.5, MeOH). ESI-MS (m/e) 848 [M + H]⁺. Anal. Calcd for C₄₃H₅₇N₇O₁₁: C, 60.91; H, 6.78; N, 11.56. Found: C, 61.10; H, 6.96; N, 11.37. AA analysis: calcd, Arg/Gly/Asp/Phe = 1.00: 1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.98:1.00:1.03:0.99.

3.1.16. Ethyl Estradiol-3-oxyacetate (14). A solution of 500 mg (1.85 mmol) of estradiol in 10 mL of anhydrous THF and 1.32 mL of sodium ethoxide in anhydrous ethanol (2 mmol/L) was mixed and stirred at room temperature for 30 min, and then 0.612 mL (5 mmol) of ethyl bromoacetate was added. The mixture was stirred at 55 °C for 16 h and TLC (ethyl acetate/petroleum, 6:1) indicated complete disappearance of estradiol. The reaction mixture was filtered, and the filtrate was evaporated under vacuum. The residue was dissolved in 15 mL of ethyl acetate and evaporated under vacuum, which was repeated four times to completely remove the residual ethyl bromoacetate. The residue was purified by flash chromatography (chloroform/ether, 10:0.3) to provide 550 mg (83%) of the title compound as a colorless powder. Mp 88–90 °C. IR (KBr) 3352, 3031, 2864, 1745, 1604, 1502, 1464, 1370, 874,  $832 \text{ cm}^{-1}$ . ¹H NMR (DMSO- $d_6$ ) 7.121 (d, J = 7.52 Hz, 1H), 6.710 (s, 1H), 6.523 (d, J = 7.52 Hz, 1H), 5.141 (s, 2H), 4.613 (q, J =4.77 Hz, 1H), 4.203 (q, J = 4.44 Hz, 2H), 2.974 (t, J = 4.56 Hz, 2H), 2.907 (m, J = 4.24 Hz, 1H), 2.551 (s, 1H), 2.025 (m, J =4.76 Hz, 2H), 2.013 (m, J = 4.26 Hz, 2H), 1.867 (m, J = 4.22 Hz, 1H), 1.842 (m, J = 4.43 Hz, 2H), 1.757 (m, J = 4.56 Hz, 2H), 1.704 (m, J = 4.28 Hz, 1H), 1.653 (m, J = 4.73 Hz, 2H), 1.411 (t, J = 4.44 Hz, 3H), 0.781 (s, 3H). ESI-MS(m/e) 359 [M + H]⁺.  $[\alpha]^{20}_{D}$  60.0 (*c* 1.00, THF). Anal. Calcd for C₂₂H₃₀O₄: C, 73.71; H, 8.44. Found: C, 73.58; H, 8.61.

3.1.17. Estradiol-3-oxyacetic acid (15). At 0 °C to a solution of 450 mg (1.26 mmol) of 3-ethyloxycarbonylmethylenoxylestradiol (14) in 3 mL of anhydrous ethanol, 0.5 mL of NaOH aqueous solution (2 mol/L) was added. The reaction mixture was stirred at room temperature for 2.5 h and TLC (ethyl acetate/petroleum, 6:1) indicated complete disappearance of 14. The pH of the reaction mixture was adjusted to 2 by adding KHSO₄ powder. The reaction mixture was extracted by ethyl acetate, and the ethyl acetate phase was dried over anhydrous Na₂SO₄. After filtration, the filtrate was evaporated under vacuum to provide 397 mg (96%) of the title compound as a colorless powder. Mp 214-215 °C. IR (KBr) 3350, 3033, 2866, 1726, 1602, 1501, 1463, 1372, 875, 831 cm⁻¹. ¹H NMR  $(DMSO-d_6)$  10.551 (s, 1H), 7.001 (d, J = 7.50 Hz, 1H), 6.631 (s, 1H), 6.511 (d, J = 7.51 Hz, 1H), 5.002 (s, 2H), 4.415 (q, J =4.76 Hz, 1H), 2.966 (t, J = 4.55 Hz, 2H), 2.889 (m, J = 4.25 Hz, 1H), 2.560 (s, 1H), 2.020 (m, J = 4.75 Hz, 2H), 2.010 (m, J =4.25 Hz, 2H), 1.862 (m, J = 4.23 Hz, 1H), 1.837 (m, J = 4.44 Hz, 2H), 1.750 (m, J = 4.55 Hz, 2H), 1.700 (m, J = 4.25 Hz, 1H), 1.647 (m, J = 4.74 Hz, 2H), 0.783 (s, 3H). ESI-MS (m/e) 331 [M  $(\alpha)^{-1} + H^{-1}$ .  $[\alpha]^{20}_{D}$  50.0 (c 0.60, THF). Anal. Calcd for  $C_{20}H_{26}O_4$ : C, 72.70; H, 7.93. Found: C, 72.54; H, 8.11.

3.1.18. N-(Estradiol-3-oxyacetyl)-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl (16). When the same procedure as that used in the preparation of 8 was used, from 50 mg (0.15 mmol) of estradiol-3-oxyacetic acid and 119 mg (0.15 mmol) of HCl·H-Arg(NO₂)-Gly- Asp(OBzl)-Ser(Bzl)-OBzl, 150 mg (93.2%) of the title compound was obtained as a colorless powder. Mp 114-116 °C. IR (KBr) 3355, 3340, 3322, 3086, 3074, 3031, 1748, 1683, 1601, 1500, 1462, 1443, 1395, 1366, 741, 692 cm⁻¹. ¹H NMR (DMSOd₆) 8.382 (s, 1H), 8.220 (s, 1H), 8.083 (s, 1H), 8.005 (s, 1H), 7.346 (t, J = 7.85 Hz, 1H), 7.342 (t, J = 7.88 Hz, 1H), 7.336 (t, J =7.84 Hz, 1H), 7.303 (t, J = 7.85 Hz, 2H), 7.292 (t, J = 7.88 Hz, 2H), 7.254 (t, *J* = 7.84 Hz, 2H), 7.245 (d, *J* = 7.85 Hz, 2H), 7.186 (d, J = 7.88 Hz, 2H), 7.175 (d, J = 7.86 Hz, 2H), 7.123 (d, J =7.51 Hz, 1H), 7.037 (s, 1H), 6.708 (s, 1H), 6.522 (d, J = 7.51 Hz, 1H), 6.415 (s, 1H), 6.374 (s, 1H), 5.166 (s, 2H), 5.143 (s, 2H), 5.135 (s, 2H), 5.006 (s, 2H), 4.902 (dt, J = 6.32 Hz, J = 6.60 Hz, 1H), 4.713 (t, *J* = 6.53 Hz, 1H), 4.705 (t, *J* = 6.46 Hz, 1H), 4.615 (t, J = 4.78 Hz, 1H), 3.965 (d, J = 6.00 Hz, 2H), 3.769 (d, J =4.15 Hz, 2H), 2.970 (t, J = 4.55 Hz, 2H), 2.912 (m, J = 4.26 Hz, 1H), 2.785 (t, J = 5.15 Hz, 2H), 2.627 (t, J = 6.52 Hz, 2H), 2.553 (s, 1H), 2.029 (m, J = 4.74 Hz, 2H), 2.014 (m, J = 4.33 Hz, 2H), 1.866 (m, J = 4.25 Hz, 1H), 1.841 (m, J = 4.42 Hz, 2H), 1.756 (m, J = 4.53 Hz, 2H), 1.727 (m, J = 6.34 Hz, 2H), 1.704 (m, J =4.27 Hz, 1H), 1.652 (m, J = 4.72 Hz, 2H), 1.629 (m, J = 6.36 Hz, 2H), 0.782 (s, 3H). [α]²⁰_D 55.0 (*c* 0.5, MeOH). ESI-MS 1061 [M + H]⁺. Anal. Calcd for C₅₆H₆₈N₈O₁₃: C, 63.38; H, 6.46; N, 10.56. Found: C, 63.22; H, 6.29; N, 10.71. AA analysis: calcd, Arg/Gly/ Asp/Ser = 1.00:1.00: 1.00:1.00; found, Arg/Gly/Asp/Ser = 0.99: 1.00:1.02:0.97.

3.1.19. N-(Estradiol-3-oxyacetyl)-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl (17). When the same procedure as that used in the preparation of 8 was used, from 50 mg (0.15 mmol) of estradiol-3-oxyacetic acid and 107 mg (0.15 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl, 111 mg (74%) of the title compound was obtained as a colorless powder. Mp 130-132 °C. IR (KBr) 3355, 3342, 3328, 3089, 3073, 3034, 1745, 1682, 1600, 1505, 1463, 1446, 1388, 1375, 748, 699 cm⁻¹. ¹H NMR (DMSO-d₆) 8.380 (s, 1H), 8.223 (s, 1H), 8.081 (s, 1H), 8.002 (s, 1H), 7.343 (t, J =7.82 Hz, 1H), 7.337 (t, J = 7.85 Hz, 1H), 7.301 (t, J = 7.84 Hz, 2H), 7.290 (t, J = 7.86 Hz, 2H), 7.241 (d, J = 7.82 Hz, 2H), 7.183 (d, J = 7.86 Hz, 2H), 7.121 (d, J = 7.52 Hz, 1H), 7.039 (s, 1H),6.711 (s, 1H), 6.520 (d, J = 7.52 Hz, 1H), 6.418 (s, 1H), 6.376 (s, 1H), 5.164 (s, 2H), 5.140 (s, 2H), 5.003 (s, 2H), 4.900 (dt, J =6.30 Hz, J = 6.61 Hz, 1H), 4.715 (t, J = 6.50 Hz, 1H), 4.707 (t, J = 6.43 Hz, 1H), 4.611 (t, J = 4.75 Hz, 1H), 3.968 (d, J =6.02 Hz, 2H), 3.262 (m, J = 4.12 Hz, 1H), 2.966 (t, J = 4.58 Hz, 2H), 2.915 (m, J = 4.25 Hz, 1H), 2.793 (t, J = 5.16 Hz, 2H), 2.632 (t, J = 6.55 Hz, 2H), 2.556 (s, 1H), 2.024 (m, J = 4.76 Hz, 2H), 2.016 (m, J = 4.30 Hz, 2H), 1.862 (m, J = 4.26 Hz, 1H), 1.833 (m, J = 4.46 Hz, 2H), 1.759 (m, J = 4.54 Hz, 2H), 1.725

(m, J = 6.32 Hz, 2H), 1.702 (m, J = 4.26 Hz, 1H), 1.653 (m, J = 4.70 Hz, 2H), 1.627 (m, J = 6.34 Hz, 2H), 0.816 (s, 3H), 0.780 (d, J = 4.14 Hz, 6H). Anal. Calcd for C₅₁H₆₆N₈O₁₂: C, 62.31; H, 6.77; N, 11.40. Found: C, 62.14; H, 6.59; N, 11.57. AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.99:1.00:0.98:0.97.  $[\alpha]^{20}_{D}$  60.0 (*c* 1.00, MeOH). ESI-MS 983 [M + H]⁺.

3.1.20. N-(Estradiol-3-oxyacetyl)-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl (18). When the same procedure as that used in the preparation of 8 was used, from 50 mg (0.15 mmol) of estradiol-3-oxyacetic acid and 119 mg (0.15 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl, 97 mg (61%) of the title compound was obtained as a colorless powder. Mp 136-138 °C. IR (KBr) 3354, 3343, 3326, 3081, 3065, 3031, 1742, 1683, 1601, 1500, 1466, 1445, 1392, 1362, 748, 700 cm⁻¹. ¹H NMR (DMSO-d₆) 8.381 (s, 1H), 8.223 (s, 1H), 8.081 (s, 1H), 8.002 (s, 1H), 7.340 (t, *J* = 7.82 Hz, 1H), 7.396 (t, J = 7.82 Hz, 1H), 7.392 (t, J = 7.81 Hz, 1H), 7.339 (t, J = 7.82 Hz, 1H), 7.301 (t, J = 7.83 Hz, 2H), 7.290 (t, J =7.86 Hz, 2H), 7.251 (t, J = 7.82 Hz, 2H), 7.207 (d, J = 7.82 Hz, 2H), 7.184 (d, J = 7.85 Hz, 2H), 7.176 (d, J = 7.83 Hz, 2H), 7.121 (d, J = 7.50 Hz, 1H), 7.033 (s, 1H), 6.705 (s, 1H), 6.521 (d, J = 7.50 Hz, 1H), 6.411 (s, 1H), 6.377 (s, 1H), 5.160 (s, 2H),5.144 (s, 2H), 5.011 (s, 2H), 4.900 (dt, J = 6.30 Hz, J = 6.62 Hz, 1H), 4.708 (t, J = 6.51 Hz, 1H), 4.691 (t, J = 6.45 Hz, 1H), 4.608 (t, J = 4.75 Hz, 1H), 4.006 (s, 2H), 3.981 (d, J = 6.03 Hz, 2H),2.965 (t, J = 4.56 Hz, 2H), 2.910 (m, J = 4.28 Hz, 1H), 2.781 (t, J = 5.14 Hz, 2H), 2.631 (t, J = 6.50 Hz, 2H), 2.560 (s, 1H), 2.022 (m, J = 4.75 Hz, 2H), 2.012 (m, J = 4.35 Hz, 1H), 1.861 (m, J = 4.26 Hz, 1H), 1.832 (m, J = 4.43 Hz, 2H), 1.754 (m, J =4.52 Hz, 2H), 1.720 (m, J = 6.30 Hz, 2H), 1.700 (m, J = 4.26 Hz, 1H), 1.650 (m, J = 4.73 Hz, 2H), 1.625 (m, J = 6.38 Hz, 2H), 0.786 (s, 3H).  $[\alpha]^{20}$  51.0 (c 1.0, MeOH). ESI-MS 1031 [M + H]⁺. Anal. Calcd for  $C_{55}H_{66}N_8O_{12}$ : C, 64.06; H, 6.45; N, 10.87. Found: C, 64.22; H, 6.62; N, 10.70. AA analysis: calcd, Arg/Gly/ Asp/Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.98: 1.00:0.97:0.99.

3.1.21. N-(Estradiol-3-oxyacetyl)-Arg-Gly-Asp-Ser-OH (19). When the same procedure as that used in the preparation of 11 was used, from 100 mg (0.093 mmol) of estradiol-17- $\beta$ -Ocarbonylpropinyl-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl, 49 mg (70%) of the title compound was obtained as a colorless powder. Mp 155-157 °C. IR (KBr) 3443, 3387, 3342, 3325, 3028, 1685, 1601, 1503, 1464, 1446, 745, 701 cm⁻¹. ¹H NMR (DMSO-*d*₆) 9.076 (s, 1H), 9.071 (s, 1H), 8.026 (s, 1H), 8.019 (s, 1H), 8.011 (s, 1H), 8.002 (s, 2H), 7.244 (s, 2H), 7.042 (d, J = 7.51 Hz, 1H), 7.032 (s, 1H), 6.755 (s, 1H), 6.515 (d, J = 7.51 Hz, 1H), 6.400 (s, 1H), 5.004 (s, 2H), 4.851 (dt, J = 6.31 Hz, J = 6.60 Hz, 1H), 4.677 (t, J = 6.54 Hz, 1H), 4.600 (t, J = 4.72 Hz, 1H), 4.579 (t, J =6.42 Hz, 1H), 4.017 (d, J = 6.42 Hz, 2H), 3.971 (d, J = 6.03 Hz, 2H), 2.966 (t, J = 4.52 Hz, 2H), 2.905 (m, J = 4.27 Hz, 1H), 2.874 (t, J = 5.12 Hz, 2H), 2.807 (d, J = 6.61 Hz, 2H), 1.832 (m, J = 4.43 Hz, 2H), 1.762 (m, J = 4.55 Hz, 2H), 1.725 (m, J = 6.31 Hz, 2H), 1.700 (m, *J* = 4.26 Hz, 1H), 1.655 (m, *J* = 4.70 Hz, 2H), 1.629 (m, J = 6.34 Hz, 2H), 1.600 (m, J = 4.52 Hz, 2H), 1.579 (m, J = 4.54 Hz, 2H), 1.544 (m, J = 4.55 Hz, 2H), 0.733 (s, 3H). $[\alpha]^{20}$  39.0 (c 0.50, MeOH). ESI-MS 745 [M + H]⁺. Anal. Calcd for C₃₆H₅₂N₆O₁₁: C, 58.05; H, 7.04; N, 11.28. Found: C, 58.20; H, 7.11; N, 11.11. AA analysis: calcd, Arg/Gly/Asp/Ser = 1.00: 1.00:1.00:1.00; found, Arg/Gly/Asp/Ser = 1.01:1.00:0.97:0.98.

**3.1.22.** *N*-(Estradiol-3-oxyacetyl)-Arg-Gly-Asp-Val-OH (20). When the same procedure as that used in the preparation of **11** was used, from 100 mg (0.093 mmol) of estradiol-17- $\beta$ -O-carbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl, 54 mg (73%) of the title compound was obtained as a colorless powder. Mp 174–176 °C. IR (KBr) 3402, 3355, 3343, 3032, 1687, 1601, 1500, 1462, 1446, 1380, 1375, 746, 700 cm⁻¹. ¹H NMR (DMSO-*d*₆) 9.104 (s, 1H), 9.087 (s, 1H), 8.029 (s, 1H), 8.021 (s, 1H), 8.013 (s, 1H), 8.004 (s, 2H), 7.241 (s, 2H), 7.044(d, *J* = 7.53 Hz, 1H), 7.030 (s, 1H), 6.754 (s, 1H), 6.512(d, *J* = 7.53 Hz, 1H), 6.403 (s, 1H), 5.002 (s, 2H), 4.855 (dt, *J* = 6.30 Hz, *J* = 6.61 Hz, 1H), 4.673 (t, *J* = 6.51 Hz, 1H), 4.574 (t, *J* = 6.40 Hz, 1H), 4.602 (t, *J* =

4.71 Hz, 1H), 3.979 (d, J = 6.00 Hz, 2H), 2.963 (t, J = 4.50 Hz, 2H), 2.902 (m, J = 4.25 Hz, 1H), 2.876 (t, J = 5.10 Hz, 2H), 2.801 (d, J = 6.60 Hz, 2H), 1.837 (m, J = 4.45 Hz, 2H), 1.768 (m, J = 4.56 Hz, 2H), 1.722 (m, J = 6.30 Hz, 2H), 1.704 (m, J = 4.28 Hz, 1H), 1.657 (m, J = 4.71 Hz, 2H), 1.625 (m, J = 6.35 Hz, 2H), 1.602 (m, J = 4.51 Hz, 2H), 1.576 (m, J = 4.52 Hz, 2H), 1.549 (m, J = 4.56 Hz, 2H), 0.935 (d, J = 4.25 Hz, 6H), 0.742 (s, 3H). [ $\alpha$ ]²⁰_D 45.0 (c 0.50, MeOH). ESI-MS 758 [M + H]⁺. Anal. Calcd for C₃₈H₅₆N₆O₁₀: C, 63.30; H, 7.46; N, 11.10. Found: C, 63.47; H, 7.57; N, 11.28. AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.98:1.00:0.98:0.97.

3.1.23. N-(Estradiol-3-oxyacetyl)-Arg-Gly-Asp-Phe-OH (21). When the same procedure as that used in the preparation of 11 was used, from 100 mg (0.095 mmol) of estradiol-17- $\beta$ -Ocarbonylpropionyl-Arg(NO₂)-Gly-Asp(OBzl)-Phe-OBzl, 59 mg (77%) of the title compound was obtained as a colorless powder. Mp 180-182 °C. IR (KBr) 3405, 3380, 3375, 3030, 1690, 1602, 1503, 1460, 745, 701 cm⁻¹. ¹H NMR (DMSO- $d_6$ ) 9.070 (s, 1H), 9.063 (s, 1H), 8.035 (s, 1H), 8.010 (s, 1H), 8.003 (s, 1H), 7.986 (s, 2H), 7.275 (t, J = 7.80 Hz, 2H), 7.217 (s, 1H), 7.127 (d, J = 7.80 Hz, 2H),7.079 (d, J = 7.85 Hz, 1H), 7.063 (d, J = 7.50 Hz, 1H), 7.026 (s, 1H), 6.744 (s, 1H), 6.667 (d, J = 7.51 Hz, 1H), 6.645 (s, 1H), 4.991 (s, 2H), 4.840 (dt, J = 6.32 Hz, J = 6.60 Hz, 1H), 4.670 (t, J = 6.52 Hz, 1H), 4.597 (t, J = 4.70 Hz, 1H), 4.573 (t, J = 6.40Hz, 1H), 3.966 (d, J = 6.00 Hz, 2H), 3.227 (t, J = 4.72 Hz, 2H), 2.960 (t, J = 4.54 Hz, 2H), 2.900 (m, J = 4.28 Hz, 1H), 2.871 (t, J = 5.14 Hz, 2H), 2.800 (d, J = 6.56 Hz, 2H), 1.840 (m, J = 4.45Hz, 2H), 1.766 (m, *J* = 4.52 Hz, 2H), 1.728 (m, *J* = 6.30 Hz, 2H), 1.670 (m, J = 4.72 Hz, 2H), 1.626 (m, J = 6.30 Hz, 2H), 1.604 (m, J = 4.54 Hz, 2H), 1.584 (m, J = 4.58 Hz, 1H), 1.572 (m, J =4.54 Hz, 2H), 1.543 (m, J = 4.52 Hz, 2H), 1.467 (m, J = 4.56 Hz, 1H), 0.752 (s, 3H). [α]²⁰_D 48.0 (*c* 0.50, MeOH). ESI-MS 805 [M + H]⁺. Anal. Calcd for C₄₂H₅₆N₆O₁₀: C, 62.67; H, 7.01; N, 10.44. Found: C, 61.73; H, 7.07; N, 10.63. AA analysis: calcd, Arg/Gly/ Asp/Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.98: 1.00:0.98:0.97.

**3.1.24. Ethyl Estrone-3-oxyacetate (22).** To the solution of 500 mg (1.85 mmol) of estrone in 10 mL of anhydrous THF, 1.4 mL of sodium ethoxide in anhydrous ethanol (2.0 mol/L) was added. The mixture was stirred for 0.5 h, to which 0.750 mL (5.5mmol) of ethyl bromoacetate was added. The reaction mixture was stirred at 56 °C for 16 h and TLC (CHCl₃/CH₃OH, 10:1) indicated the complete disappearance of estrone. The reaction mixture was evaporated to remove the solvent and excess of ethyl bromoacetate. After purification on chromatography column of silica gel 593 mg (90%) of the title compound was obtained as a colorless powder. Mp. 98–100 °C. ESI-MS(*m*/*e*) 357 [M + H]⁺. [ $\alpha$ ]²⁰_D 138.0 (*c* 0.50, THF).

**3.1.25.** Estrone-3-oxyacetic Acid (23). At 0 °C to the solution of 500 mg (1.40 mmol) of ethyl estrone-3-oxyacetate in 3 mL of anhydrous ethanol, 2 mL of aqueous solution of NaOH (2 mol/L) was added dropwise. The reaction mixture was stirred at room temperature for 2.5 h and TLC (CHCl₃/CH₃OH, 10:1) indicated the complete disappearance of methyl estrone-3-oxyacetate. The reaction mixture was adjusted with KHSO₄ powder to pH 7.0 and evaporated to remove the organic solvent. To the residue, 3 mL of water was added and adjusted with KHSO₄ powder to pH 2.0. The mixture was extracted with ethyl acetate and dried over anhydrous Na₂SO₄. After filtration the filtrate was evaporated to give 442 mg (96%) of the title compound as a colorless powder. Mp 214–215 °C. ESI-MS (*m/e*) 329 [M + H]⁺. [ $\alpha$ ]²⁰_D 159.0 (*c* 0.45, THF).

**3.1.26.** Estrone-3-oxyacetyl-Arg(NO₂)-Gly-Asp(OBzl)-Ser-(Bzl)-OBzl (24). When the same procedure as that used in the preparation of **8** was used, from 50 mg (0.15 mmol) of estrone-3oxyacetic acid and 119 mg (0.15 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl, 99 mg (62%) of the title compound was obtained as a colorless powder. Mp 133–135 °C. IR (KBr) 3352, 3343, 3326, 3084, 3072, 3028, 1749, 1722, 1680, 1603, 1505, 1460, 1445, 744, 693 cm⁻¹. ¹H NMR (DMSO-*d*₆) 8.380 (s, 1H), 8.217 (s, 1H), 8.081 (s, 1H), 8.002 (s, 1H), 7.342 (t, *J* = 7.82 Hz, 1H), 7.339 (t, *J* = 7.84 Hz, 1H), 7.334 (t, *J* = 7.82 Hz, 1H), 7.300

(t, J = 7.82 Hz, 2H), 7.290 (t, J = 7.84 Hz, 2H), 7.250 (t, J =7.82 Hz, 2H), 7.242 (d, J = 7.82 Hz, 2H), 7.183 (d, J = 7.84 Hz, 2H), 7.172 (d, J = 7.82 Hz, 2H), 7.120 (d, J = 7.50 Hz, 1H), 7.034 (s, 1H), 6.710 (s, 1H), 6.520 (d, J = 7.50 Hz, 1H), 6.412 (s, 1H), 6.376 (s, 1H), 5.167 (s, 2H), 5.145 (s, 2H), 5.136 (s, 2H), 5.002 (s, 2H), 4.900 (dt, J = 6.30 Hz, J = 6.58 Hz, 1H), 4.711 (t, J = 6.50 Hz, 1H), 4.702 (t, J = 6.44 Hz, 1H), 4.613 (t, J = 4.76Hz, 1H), 3.964 (d, J = 6.01 Hz, 2H), 3.767 (d, J = 4.17 Hz, 2H), 2.972 (t, J = 4.56 Hz, 2H), 2.919 (m, J = 4.24 Hz, 1H), 2.790 (d, J = 5.16 Hz, 2H), 2.633 (t, J = 6.50 Hz, 2H), 2.058 (t, J = 4.76Hz, 2H), 2.017 (m, J = 4.36 Hz, 2H), 1.845 (m, J = 4.46 Hz, 2H), 1.750 (m, J = 4.55 Hz, 2H), 1.729 (m, J = 6.32 Hz, 2H), 1.707 (m, J = 4.29 Hz, 1H), 1.654 (m, J = 4.75 Hz, 2H), 1.626 (m, J =6.34 Hz, 2H), 0.792 (s, 3H). ESI-MS (m/e) 1059 [M + H]⁺. [ $\alpha$ ]²⁰_D 32.0 (c 0.5, CHCl₃.MeOH, 10:1). Anal. Calcd for C₅₆H₆₆N₈O₁₃: C, 63.50; H, 6.28; N, 10.58. Found: C, 63.65; H, 6.35; N, 10.41. AA analysis: calcd, Arg/Gly/Asp/Ser = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Ser = 0.97:1.00:1.01:0.98.

3.1.27. Estrone-3-oxyacetyl-Arg(NO₂)-Gly-Asp(OBzl)-Val-**OBzl** (25). When the same procedure as that used in the preparation of 8 was used, from 50 mg (0.15 mmol) of estrone-3-oxyacetic acid and 107 mg (0.15 mmol) of HCl·H-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl, 101 mg (68%) of the title compound was obtained as a colorless powder. Mp 124-126 °C. IR (KBr) 3359, 3345, 3331, 3086, 3077, 3030, 1747, 1724, 1680, 1602, 1507, 1465, 1448, 1389, 1378, 744, 695 cm⁻¹. ¹H NMR (DMSO-d₆) 8.377 (s, 1H), 8.220 (s, 1H), 8.078 (s, 1H), 8.000 (s, 1H), 7.345 (t, J = 7.80 Hz, 1H), 7.339 (t, J = 7.83 Hz, 1H), 7.305 (t, J = 7.82 Hz, 2H), 7.294 (t, J = 7.84 Hz, 2H), 7.245 (d, J = 7.80 Hz, 2H), 7.185 (d, J =7.84 Hz, 2H), 7.124 (d, J = 7.50 Hz, 1H), 7.042 (s, 1H), 6.714 (s, 1H), 6.523 (d, J = 7.50 Hz, 1H), 6.422 (s, 1H), 6.378 (s, 1H), 5.169 (s, 2H), 5.146 (s, 2H), 5.007 (s, 2H), 4.904 (dt, J = 6.32 Hz, J = 6.60 Hz, 1H), 4.718 (t, J = 6.52 Hz, 1H), 4.709 (t, J = 6.41Hz, 1H), 4.613 (t, J = 4.76 Hz, 1H), 3.971 (d, J = 6.00 Hz, 2H), 2.967 (t, J = 4.55 Hz, 2H), 2.919 (m, J = 4.28 Hz, 1H), 2.795 (t, J = 5.14 Hz, 2H), 2.634 (t, J = 6.52 Hz, 2H), 2.027 (m, J = 4.74Hz, 2H), 2.019 (m, J = 4.35 Hz, 2H), 1.866 (m, J = 4.29 Hz, 1H), 1.835 (m, J = 4.48 Hz, 2H), 1.762 (m, J = 4.56 Hz, 2H), 1.733 (m, J = 6.30 Hz, 2H), 1.706 (m, J = 4.27 Hz, 1H), 1.656 (m, J =4.72 Hz, 2H), 1.629 (m, J = 6.35 Hz, 2H), 0.819 (s, 3H), 0.785 (d, J = 4.16 Hz, 6H). Anal. Calcd for C₅₁H₆₄N₈O₁₂: C, 62.43; H, 6.58; N, 11.42. Found: C, 62.57; H, 6.50; N, 11.61. AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.98:1.00:0.97:0.98. ESI-MS(*m*/*e*) 981 [M + H]⁺. [ $\alpha$ ]²⁰_D 26.0 (c 0.5, CHCl₃/MeOH, 10:1).

3.1.28. Estrone-3-oxyacetyl-Arg(NO₂)-Gly-Asp(OBzl)-Phe-**OBzl** (26). When the same procedure as that used in the preparation of 8 was used, from 50 mg (0.15 mmol) of estrone-3-oxyacetic acid and 119 mg (0.15 mmol) of HCl·H-Arg(NO2)-Gly-Asp(OBzl)-Phe-OBzl, 110 mg (70%) of the title compound was obtained as a colorless powder. Mp 130-132 °C. IR (KBr) 3357, 3346, 3328, 3083, 3062, 3029, 1745, 1720, 1681, 1600, 1504, 1467, 1443, 747, 703 cm⁻¹. ¹H NMR (DMSO-*d*₆) 8.385 (s, 1H), 8.227 (s, 1H), 8.084 (s, 1H), 8.010 (s, 1H), 7.342 (t, J = 7.80 Hz, 1H), 7.399 (t, J =7.80 Hz, 1H), 7.396 (t, J = 7.77 Hz, 1H), 7.342 (t, J = 7.80 Hz, 1H), 7.304 (t, J = 7.81 Hz, 2H), 7.293 (t, J = 7.84 Hz, 2H), 7.255 (t, J = 7.80 Hz, 2H), 7.211 (d, J = 7.80 Hz, 2H), 7.187 (d, J = 7.80 Hz, 2H)7.83 Hz, 2H), 7.177 (d, J = 7.81 Hz, 2H), 7.124 (d, J = 7.52 Hz, 1H), 7.036 (s, 1H), 6.707 (s, 1H), 6.525 (d, J = 7.51 Hz, 1H), 6.414 (s, 1H), 6.382 (s, 1H), 5.163 (s, 2H), 5.147 (s, 2H), 5.014 (s, 2H), 4.903 (dt, J = 6.32 Hz, J = 6.64 Hz, 1H), 4.712 (t, J =6.50 Hz, 1H), 4.694 (t, J = 6.43 Hz, 1H), 4.002 (s, 2H), 3.985 (d, J = 6.00 Hz, 2H), 2.962 (t, J = 4.57 Hz, 2H), 2.913 (m, J =4.27 Hz, 1H), 2.784 (t, J = 5.16 Hz, 2H), 2.634(t, J = 6.51 Hz, 2H), 2.025 (m, J = 4.74 Hz, 2H), 2.014 (m, J = 4.36 Hz, 1H), 1.865 (m, J = 4.27 Hz, 1H), 1.835 (m, J = 4.44 Hz, 2H), 1.756 (m, J = 4.54 Hz, 2H), 1.723 (m, J = 6.28 Hz, 2H), 1.706 (m, J =4.27 Hz, 1H), 1.655 (m, *J* = 4.74 Hz, 2H), 1.628 (m, *J* = 6.36 Hz, 2H), 0.791 (s, 3H). ESI-MS (*m*/*e*) 1029  $[M + H]^+$ .  $[\alpha]^{20}_D$  28.0 (c 0.5, CHCl₃/MeOH, 10:1). Anal. Calcd for C₅₅H₆₄N₈O₁₂: C, 64.19; H, 6.27; N, 10.89. Found: C, 64.34; H, 6.38; N, 10.71. AA analysis: calcd, Arg/Gly/Asp/Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.99:1.00:0.98:0.98.

3.1.29. Estrone-3-oxyacetyl-Arg-Gly-Asp-Ser-OH (27). When the same procedure as that used in the preparation of **11** was used, from 100 mg (0.094 mmol) of estrone-3-oxyacetyl-Arg(NO₂)-Gly-Asp(OBzl)-Ser(Bzl)-OBzl (24), 40 mg (57%) of the title compound were obtained as a colorless powder. Mp 170-172 °C. IR (KBr) 3449, 3392, 3347, 3329, 3031, 1726, 1682, 1604, 1505, 1462, 1445, 741, 700 cm⁻¹. ¹H NMR (DMSO-*d*₆) 9.073 (s, 1H), 9.067 (s, 1H), 8.023 (s, 1H), 8.015 (s, 1H), 8.006 (s, 1H), 8.000 (s, 2H), 7.241 (s, 2H), 7.038 (d, J = 7.50 Hz, 1H), 7.029 (s, 1H), 6.751 (s, 1H), 6.512 (d, J = 7.50 Hz, 1H), 6.404 (s, 1H), 5.008 (s, 2H), 4.847(dt, J = 6.30 Hz, J = 6.58 Hz, 1H), 4.674 (t, J = 6.52 Hz, 1H),4.604 (t, J = 4.70 Hz, 1H), 4.575 (t, J = 6.40 Hz, 1H), 4.013 (d, J = 6.40 Hz, 2H), 3.968 (d, J = 6.00 Hz, 1H), 2.962 (t, J = 4.54Hz, 2H), 2.902 (m, J = 4.29 Hz, 1H), 2.872 (t, J = 5.13 Hz, 2H), 2.811 (d, J = 6.59 Hz, 2H), 1.830 (m, J = 4.45 Hz, 2H), 1.766 (m, J = 4.54 Hz, 2H), 1.728 (m, J = 6.31 Hz, 2H), 1.708 (m, J = 6.31 Hz, 2Hz), 1.708 (m, J = 6.31 Hz), 14.25 Hz, 1H), 1.659 (m, J = 4.72 Hz, 2H), 1.624 (m, J = 6.30 Hz, 2H), 1.607 (m, J = 4.50 Hz, 2H), 1.576 (m, J = 4.52 Hz, 2H), 1.548 (m, J = 4.56 Hz, 2H), 0.827 (s, 3H). ESI-MS (m/e) 744 [M + H]⁺.  $[\alpha]^{20}_{D}$  55.0 (*c* 1.0, MeOH). Anal. Calcd for C₃₆H₅₀N₆O₁₁: C, 58.21; H, 6.78; N, 11.31. Found: C, 58.40; H, 6.73; N, 11.13. AA analysis: calcd, Arg/Gly/Asp/Ser = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Ser = 1.02:1.00:0.98:0.98.

3.1.30. Estrone-3-oxyacetyl-Arg-Gly-Asp-Val-OH (28). When the same procedure as that used in the preparation of 11 was used, from 100 mg (0.102 mmol) of estrone-3-oxyacetyl-Arg(NO₂)-Gly-Asp(OBzl)-Val-OBzl (25), 59 mg (76%) of the title compound was obtained as a colorless powder. Mp 164-166 °C. IR (KBr) 3411, 3353, 3347, 3030, 1725, 1684, 1605, 1503, 1467, 1442, 1385, 1378, 748, 703 cm⁻¹. ¹H NMR (DMSO-*d*₆) 9.114 (s, 1H), 9.093 (s, 1H), 8.034 (s, 1H), 8.025 (s, 1H), 8.017 (s, 1H), 8.001 (s, 2H), 7.245 (s, 2H), 7.042 (d, J = 7.50 Hz, 1H), 7.033 (s, 1H), 6.756 (s, 1H), 6.516 (d, J = 7.50 Hz, 1H), 6.412 (s, 1H), 5.011 (s, 2H), 4.853(dt, J = 6.31 Hz, J = 6.60 Hz, 1H), 4.675 (t, J = 6.50 Hz, 1H),4.572 (t, J = 6.41 Hz, 1H), 4.610 (t, J = 4.70 Hz, 1H), 3.974 (d, J = 6.01 Hz, 1H), 2.966 (t, J = 4.52 Hz, 2H), 2.907 (m, J = 4.28Hz, 1H), 2.875 (t, J = 5.10 Hz, 2H), 2.808 (d, J = 6.62 Hz, 2H), 1.839 (m, J = 4.48 Hz, 2H), 1.764 (m, J = 4.53 Hz, 2H), 1.725 (m, J = 6.27 Hz, 2H), 1.713 (m, J = 4.26 Hz, 1H), 1.659 (m, J = 4.26 Hz, 100 Hz)4.70 Hz, 2H), 1.628 (m, J = 6.33 Hz, 2H), 1.613 (m, J = 4.54 Hz, 2H), 1.578 (m, J = 4.50 Hz, 2H), 1.545 (m, J = 4.52 Hz, 2H), 0.938 (d, J = 4.27 Hz, 6H), 0.747 (s, 3H). ESI-MS (m/e) 755 [M + H]⁺.  $[\alpha]^{20}_{D}$  44.0 (c 0.5, MeOH). Anal. Calcd for  $C_{38}H_{54}N_6O_{10}$ : C, 60.46; H, 7.21; N, 11.13. Found: C, 60.62; H, 7.30; N, 11.27. AA analysis: calcd, Arg/Gly/Asp/Val = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Val = 0.97:1.00:0.98:0.99.

3.1.31. Estrone-3-oxyacetyl-Arg-Gly-Asp-Phe-OH (29). When the same procedure as that used in the preparation of **11** was used, from 100 mg (0.097 mmol) of estrone-3-oxyacetyl-Arg(NO2)-Gly-Asp(OBzl)-Phe-OBzl (26), 44 mg (56%) of the title compound was obtained as a colorless powder. Mp 164-166 °C; IR (KBr) 3408, 3384, 3376, 3034, 1722, 1693, 1600, 1505, 1467, 748, 704 cm⁻¹. ¹H NMR (DMSO-*d*₆) 9.075 (s, 1H), 9.068 (s, 1H), 8.037 (s, 1H), 8.014 (s, 1H), 8.006 (s, 1H), 7.982 (s, 2H), 7.271 (t, J = 7.81 Hz, 2H), 7.213 (s, 1H), 7.120 (d, J = 7.82 Hz, 2H), 7.072 (d, J = 7.83 Hz, 1H), 7.060 (d, J = 7.51 Hz, 1H), 7.022 (s, 1H), 6.741 (s, 1H), 6.663 (d, J = 7.50 Hz, 1H), 6.643 (s, 1H), 4.993 (s, 2H), 4.843 (dt, J = 6.30 Hz, J = 6.58 Hz, 1H), 4.671 (t, J = 6.50 Hz, 1H),4.590 (t, J = 4.71 Hz, 1H), 4.576 (t, J = 6.42 Hz, 1H), 3.223 (t, J = 4.74 Hz, 2H), 2.962 (t, J = 4.55 Hz, 2H), 2.903 (m, J =4.29 Hz, 1H), 2.873 (t, J = 5.16 Hz, 2H), 2.802 (d, J = 6.53 Hz, 2H), 1.843 (m, J = 4.47 Hz, 2H), 1.763 (m, J = 4.50 Hz, 2H), 1.721 (m, J = 6.27 Hz, 2H), 1.674 (m, J = 4.70 Hz, 2H), 1.623(m, J = 6.27 Hz, 2H), 1.602 (m, J = 4.52 Hz, 2H), 1.582 (m, J =4.55 Hz, 1H), 1.570 (m, J = 4.56 Hz, 2H), 1.540 (m, J = 4.50 Hz, 2H), 1.464 (m, J = 4.53 Hz, 1H), 0.810 (s, 3H). ESI-MS (m/e) 803  $[M + H]^+$ .  $[\alpha]^{20}_D$  32.0 (c 0.5, MeOH). Anal. Calcd for C₄₂H₅₄N₆O₁₀: C, 62.83; H, 6.78; N, 10.47. Found: C,

62.65; H, 6.70; N, 10.66. AA analysis: calcd, Arg/Gly/Asp/Phe = 1.00:1.00:1.00:1.00; found, Arg/Gly/Asp/Phe = 0.99:1.00: 0.97: 0.99.

3.1.32. Bioassay In Vivo. The assessments described herein were performed based on a protocol reviewed and approved by the ethics committee of Peking University. The committee assures the welfare of the animals was maintained in accordance to the requirements of the animal welfare act and according to the guide for care and use of laboratory animals. The tested compound was dissolved in aqueous solution of 0.5% CMC just before use and kept in an ice bath. Female Kuiming mice weighing  $30.7 \pm 3.1$  g (7 weeks old, purchased from Animal Center of Peking University) were anesthetized with pentobarbital sodium (40.0 mg/kg, i.p.). The mice of OVX groups were given an abdominal OVX by the standard procedure, and the mice of the sham group were given abdominorotomy only. On the fifth day after the surgical operation, the mice of the OVX and sham groups were intraperitoneally injected with 2  $\mu$ L of an aqueous solution of 0.5% CMC, the mice of the treatment groups were intraperitoneally injected with 2  $\mu$ L of the solution of estrogen, the mixture of estrogen and RGD peptide, or 0.1103  $\mu$ mol/Kg of the estrogen-RGD peptide in an aqueous solution of 0.5% CMC once a day. All of the mice were treated according to the corresponding procedure for 4 weeks. On the next day of the last administration, the mice were weighed and blood was drawn from the eye orbit. The mice were then anesthetized with sodium pentobarbital (40.0 mg/kg, i.p.) and executed to remove the lungs, livers, spleens, uteri, and left femurs.

After 30 min of standing, the blood was centrifugated at 3000 g for 20 min and the serum was stored at -20 °C before use. The calcium content of the serum was measured by the method of o-methylphenolphthalein complexing ketone. The phosphorus content of the serum was measured by the method of molybdenum blue. The ALP content of the serum was measured using disodium phenylphosphate as the substrate.

The lungs, livers, spleens, and uteri were weighed directly. After completely removing the muscle, the lengths of the left femurs were measured and then immersed in a solution of chloroform—methanol (2:1) two times (one time for 3 h). After defatting, the left femurs were heated at 120 °C for 6 h, cooled, and weighed to record the dry weight. The femurs were incinerated in a furnace at 800 °C for 8 h, cooled, weighed to record the ash weight and calculate the rate of the ash weight to dry femur weight (namely, the mineral content of the femur).

The ashes of the left femurs were dissolved in 0.5 mL of hydrochloric acid (6 N) and diluted to 5 mL with ultrapure water, from which 0.05 mL of the solution was drawn and diluted to 1 mL with ultrapure water before use. The calcium content of the aqueous solution was measured by the method of o-methylphenol-phthalein complexing ketone. The phosphorus content of the aqueous solution was measured by the method of molybdenum blue.

Acknowledgment. This work was supported by Beijing area major laboratory of peptide and small molecular drugs and National Natural Scientific Foundation of China (30572235). We wish to express our deep appreciation to Professor Paul Wentworth of the Department of Chemistry, the Scripps Research Institute of U.S.A. for proofreading the manuscript.

Supporting Information Available: Physical, analytical, and spectrometric data of the target compounds (11-13, 19-21, and 27-29). This material is available free of charge via the Internet at http://pubs.acs.org.

#### References

- Davidson, M.; DeSimone, M. E. Confronting osteoporosis: What we know, where we're headed. *Clin. Rev.* 2002, 12, 76–82.
   Amin, Shreyasee.; Zhang, Yuqinq.; Felson, David T.; Sawin, Clark
- (2) Amin, Shreyasee.; Zhang, Yuqinq.; Felson, David T.; Sawin, Clark T.; Hannan, Marian T.; Wilson, Peter W. F. Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham study. Am. J. Med. 2006, 119, 426–433.

- (3) Spencer, C. P.; Morris, E. P.; Rymer, J. M. Selective estrogen receptor modulators: Women's penacea for the next millennium? *Am. J. Obstet. Gynecol.* **1999**, *180*, 763–770.
- (4) Michael, J. S. Selective estrogen receptor modulators: The ideal estrogen replacement. **2001**, *8*, 25–30.
- (5) Hosking, D.; Chilvers, C. E.; Christiansen, C.; Ravn, P.; Wasnich, R.; Ross, P.; McClung, M.; Balske, A.; Thompson, D.; Daley, M.; Yates, A. J. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early postmenopausal intervention cohort study group. *N. Engl. J. Med.* **1998**, *338*, 485–492.
- (6) Stampter, M.; Colditz, G. Estrogen replacement therapy and coronary heart disease: A quantitative assessment of the epidimiological evidence. *Prev. Med.* **1991**, *20*, 47–63.
- (7) Michealsson, K.; Baron, J. A.; Farahmand, B. Y.; Johnell, O.; Magnusson, C.; Persson, P. G.; Persson, I.; Ljunghall, S. Hormone replacement therapy and risk of hip fracture: Population based casecontrol study. The Swedish hip fracture study group. *Br. Med. J.* **1998**, *316*, 1858–1863.
- (8) Colditz, G. A.; Hankinson, S. E.; Hunter, D. J.; Willett, W. C.; Manson, J. E.; Stampfer, M. J. The use of estrogen and progestins and the risk of breast cancer in postmenopausal women. *N. Engl. J. Med.* **1995**, *332*, 1589–1593.
- (9) Mishell, D. J. Estrogen replacement therapy: An overview. Am. J. Obstet. Gynecol. 1989, 161 (6 Pt 2), 1825–1827.
- (10) Witt, D. M.; Lousberg, T. R. Controversies surrounding estrogen use in postmenopausal women. Ann. Pharmaeother. 1997, 31, 745–755.
- (11) Josse, R. G. Effect of ovarian hormonal therapy on skeletal and estraskeletal tissues in women. *Can. Med. Assoc. J.* **1996**, *155*, 929– 934
- (12) Wang, C.; Zhao, M.; Yang, J.; Peng, S. Q. Synthesis and analgesic effects of kyotorphin-steroid linkers. *Steroids* 2001, 66, 811–815.
- (13) Wang, C.; Zhao, M.; Peng, S. Q. The synthesis and immunosuppressive activities of steroid-urotoxin linkers. *Bioorg. Med. Chem.* 2004, 12, 4403–4421.

- (14) Wang, C.; Cui, W. N.; Zhao, M.; Yang, J.; Peng, S. Q. Studies on the synthesis and anti-osteoporosis of estrogen-GHRPS linkers. *Bioorg. Med. Chem. Lett.* 2003, 13, 143–146.
- (15) Oursler, M. J. Estrogen regulation of gene expression in osteoblasts and osteoclasts. *Crit. Rev. Eukaryotic Gene Expression* **1998**, 8, 125– 140.
- (16) Majeska, K. J.; Ryaby, J. T.; Einhorn, T. A. Direct Modulation of osteoblastic activity with estrogen. J. Bone J. Surg., Am. Vol. 1994, 76, 713-721.
- (17) Zang, X. Y.; Tan, Y. B.; Pang, Z. L.; Zhang, W. Z.; Zhao, J. Effects of parathyroid hormone and estradiol on proliferation and function of human osteoblasts from fetal long bone: An in vitro study. *Chin. Med. J.* **1994**, *107*, 600–603.
- (18) Horton, M. A.; Taylor, M. L.; Arnett, T. R.; Helfrich, M. H. Arg-Gly-Asp (RGD) peptides and the anti-vitronectin receptor antidy 23C6 inhibit dentine resorption and cell spreading by osteoclast. *Exp. Cell Res.* **1991**, *195*, 368–375.
- (19) Thompson, D. D.; Simmons, H. A.; Pirie, C. M.; Ke, H. Z. FDA guidelines and animal models for osteoporosis. *Bone* 1995, 17, 125s– 133s.
- (20) Suzuki, Y.; Okonogi, H.; Shimizu, H. Effect of erythroblust calcium ion concentration on the micronucleus test: Mutation research/ environmental mutagenesis and related subjects. **1996**, *357*, 236s.
- (21) Titov, V. N.; Tvorogova, M. G. Blood serum inorganic phosphorus: diagnostic significance and method of determination (review of the literature). *Lab. Delo.* **1991**, *12*, 10–16.
- (22) Wright, D. S.; Friedman, M. L.; Jenkins, S. H.; Heineman, W. R.; Halsall, H. B. Sequestration electrochemistry: The interaction of chlorpromazine and human orosomucoid. *Anal. Biochem.* **1988**, *168*, 290–293.

JM070242A